
Systems Architecture

Contents 1

Contents
Software

Programming Languages

Inside the Machine

Memory
Secondary Storage

Systems Architecture

Contents 2

Software

Contents 3

What is a Computer System?

A computer system includes both hardware and software.
Hardware: Physical components you can touch.

Software: Programs and instructions that run on hardware.

Contents 4

Elements of a Computer System

Input: Devices like keyboard, mouse.

Process: The computer processes input.

Output: Devices like screen, printer.

Contents 5

Hardware

CPU: Central Processing Unit.

Memory (RAM): Temporary data storage.
Storage Devices: Hard drives, SSDs.

Input Devices: Keyboard, mouse, microphone.

Output Devices: Screen, printer, speakers.

Contents 6

Software

Operating Systems: Manage hardware, e.g., Windows, macOS.
Application Software: Programs for user tasks, e.g., word processors.

System Software: Manages hardware and software interactions.

Contents 7

Types of Software

Application Software: For end-user tasks.

System Software: Manages computer operations.

Contents 8

System Software

Operating Systems

Device Drivers

Utility Software

Contents 9

Application Software

Word Processors: e.g., Microsoft Word, Google Docs.

Web Browsers: e.g., Chrome, Firefox.

Media Players: e.g., VLC, iTunes.

Graphic Design Software: e.g., Photoshop, GIMP.

Contents 10

System Software

Operating Systems: e.g., Windows, macOS, Linux.
Manage hardware resources.

Provide user interfaces.

Device Drivers: Allow OS to communicate with hardware.

Utilities: Tools for system management.
e.g., disk cleanup, antivirus.

Contents 11

Role of an Operating System

Manage Resources: CPU, memory, I/O devices.

Provide a User Interface: GUI and CLI.

Hardware Abstraction: Simplifies hardware interaction.

Security: Protects system and data.

Contents 12

Management of Resources

Processor Management: Allocates CPU time.

Memory Management: Manages RAM and virtual memory.

I/O Management: Handles communication with devices.

Application Management: Coordinates software execution.

Contents 13

User Interface

Graphical User Interface (GUI): Icons, windows, menus.
Command Line Interface (CLI): Text-based commands.

Accessibility Features: Screen readers, magnification.

Contents 14

Utility Software

Disk Cleanup: Frees up disk space.

Antivirus: Detects and removes malware.
Backup and Recovery: Safeguards data.

Disk Defragmenters: Improves performance.

System Monitoring Tools: Monitors system performance.

Contents 15

Programming Languages

Contents 16

Objectives

Define a programming language and its role in software development.

Differentiate between low-level and high-level programming languages.
Compare high-level and low-level programming languages.

Define machine code and assembly language as low-level languages.

Describe the role of programming translators (assembler, compiler, interpreter).

Contents 17

What is a Computer Program?

A set of instructions compiled
together to perform specific tasks.

Machine code: Binary numbers (0s
and 1s).

Programming languages: Formal
languages for writing instructions.

Contents 18

Low-Level Languages

Machine Code

Native binary language of computers (0s and 1s).

Difficult to write and error-prone.
CPU-specific: Instructions vary between processors.

Assembly Language

Uses mnemonics (e.g., LDA #5) to represent machine code instructions.

Easier than binary but still processor-specific.

Converted to machine code by an assembler.

Contents 19

Assembly Language Example

.text

.global main

main:
mov r0, #23
and r1, r0, #1
cmp r1, #1
blt _isEven

_isOdd:
mov r0, #1
ldr r1, =oddStr
mov r2, #15
mov r7, #4
svc 0
b _exit

_isEven:
mov r0, #1
ldr r1, =evenStr
mov r2, #15
mov r7, #4
svc 0

_exit:
mov r0, #0
mov r7, #1
svc 0

.data
oddStr: .asciz "Number is odd\n"
evenStr: .asciz "Number is even\n"

Contents 20

High-Level Languages

Closer to human language; easier to read, write, and understand.
Independent of hardware; portable across different systems.

Examples: Python, Ruby, JavaScript, C#, Java, Lua.

Contents 21

High-Level Language Example

def check_odd_or_even(value):
 if value % 2 == 0:
 return "Even"
 else:
 return "Odd"

Example usage:
user_input = int(input("Enter a number: "))

result = check_odd_or_even(user_input)
print(f"The given number is {result}.")

Contents 22

High-Level vs Low-Level Languages

High-Level Language Low-Level Language

Programmer friendly Machine friendly

Easy to read and understand Hard to read and understand

Easy to modify and change Hard to make changes

Requires less code for the same task Needs more code for simple tasks

Portable across systems Non-portable

Needs a compiler or interpreter for translation Needs an assembler for translation

Less memory efficient More memory efficient

Slower execution Faster execution
Contents 23

Program Translators

Contents 24

Interpreter

Reads and executes code line by line.

No separate compilation step.

Examples: Python, JavaScript.
Code must be interpreted on each execution.

Contents 25

Compiler

Translates high-level code into machine code.

Produces a standalone executable file.

Requires separate compilation before execution.
Examples: C, C++.

Contents 26

Assembler

Converts assembly code into machine code.

One-to-one mapping from assembly to machine code.

Contents 27

Bytecode

Intermediate code used for platform independence.

Example: Java and Python.

Compiled into bytecode, then interpreted by a virtual machine.

Java

Compiled into bytecode (JVM).

Platform-independent execution.

Python

Compiled into bytecode (.pyc files).

Executed by Python Virtual Machine (PVM).
Contents 28

Inside the machine

Contents 29

Objectives

Recognize and name key hardware components inside a computer system
Understand their roles and interactions

Troubleshoot hardware issues

Contents 30

Computer Components Overview

Motherboard

Memory (RAM)

CPU (Processor)

Graphics Card
Sound Card

Network Card

Secondary Storage

Power Supply Unit
Other Components: Cables, fan, heatsink

Contents 31

Motherboard

CPU Socket

Memory Slots

Expansion Slots

Chipset
Storage Connectors

Power Connectors

I/O Ports

BIOS/UEFI Chip
CMOS Battery

Contents 32

Main Memory (RAM)

Role: Temporary storage for data
actively used by CPU
Characteristics:

Volatile (loses content when
power off)

Provides fast access

Comes in sizes like 4GB, 8GB

Contents 33

Processor (CPU)

Role: Executes instructions and
performs calculations
Components:

ALU: Performs arithmetic and
logic operations

Control Unit: Manages CPU
operations
Clock: Synchronizes operations

Registers: Fast storage within
CPU

Contents 34

Graphics Card

Role: Renders and displays visual
information

Functions:
Graphics rendering

3D processing

Video playback
Parallel processing

Contents 35

Sound Card

Role: Processes and manages audio
data

Functions:
Audio playback

Sound quality enhancement

Surround sound support
Audio recording

Contents 36

Network Card
Role: Connects computer to a
network

Functions:
Ethernet and/or wireless
connectivity
Data transmission and reception

MAC Address and network
protocols

Contents 37

Secondary Storage

Role: Long-term data storage

Types:
HDD: Magnetic storage
SSD: Flash memory

Optical Drives: CD/DVD/Blu-ray

USB Flash Drives and Memory
Cards

Contents 38

Power Supply Unit (PSU)

Role: Provides power to the computer

Functions:
Stabilizes power delivery

Protects against surges

Efficient power conversion

Regulates voltage and current

Contents 39

Heat Sink and Fan

Heat Sink:
Absorbs and dissipates heat from
CPU

Made of aluminum or copper

Fan:
Enhances heat dissipation

Controlled based on CPU
temperature

Contents 40

Memory

Contents 41

Secondary Storage

Contents 42

Systems Architecture

Contents 43

