
Programming
with Python

Contents 1

Contents
Getting Started with Python
Variables

Operators

Strings

Functions
Built in Function

Selection

Iteration

Turtle Programming
Lists

2D Lists

Dictionaries

Tuples
Exceptions

File Handling

Contents 2

Getting Started with Python

Contents 3

Objectives
Set up a Python environment on your computer.

Choose and configure an IDE.

Understand basic Python concepts.
Write and run your first Python program.

Contents 4

Step 1: Installing Python

1. Microsoft Store (Quick & Easy)

Search for "Python" on Microsoft
Store.

Install the latest version (e.g.,
3.11).

2. Full Python Package

Download from python.org.

Choose the version for your OS
(e.g., Python 3.x).

Contents 5

https://www.python.org/downloads/

Step 2: Running the Installer
Windows: Run the .exe and select "Add Python to PATH".

macOS: Use the .dmg installer.

Linux: Follow terminal-based install steps.

> python --version
Python 3.10.5

Contents 6

Step 3: Python Interactive Environment
1. Open a terminal.

2. Type python to enter the Python interactive environment.

This is also called the REPL (Read-Evaluate-Print-Loop).

Contents 7

Step 4: Basic Operations
Try these commands in the REPL:

>>> 2 + 3
>>> 5 - 1
>>> 4 * 6
>>> 10 / 3
>>> 10 // 3

Contents 8

Step 5: Variables in Python
Declare and use variables:

>>> x = 5
>>> y = 3
>>> sum_result = x + y
>>> product_result = x * y
>>> sum_result
>>> product_result

Contents 9

Step 6: Strings in Python
Working with strings:

>>> greeting = "Hello"
>>> name = "Alice"
>>> full_greeting = greeting + " " + name
>>> full_greeting

String operations:

>>> greeting_length = len(greeting)
>>> uppercase_name = name.upper()

Contents 10

Step 7: Lists in Python
Create and modify lists:

>>> fruits = ["apple", "banana", "cherry"]
>>> fruits.append("orange")
>>> fruits.remove("banana")
>>> fruits

Contents 11

Step 8: Exiting Python REPL
Use exit() , quit() , or press Ctrl+D (Windows) to exit the REPL.

Contents 12

Choosing an IDE
Default: IDLE (comes with Python).

Alternatives:
Thonny

Visual Studio Code

PyCharm

Online editors like repl.it

Choose one that fits your style!

Contents 13

https://replit.com/

Writing Your First Python Program
1. Open your chosen IDE.

2. Create a new file and save it as hello.py .

3. Enter the following code:

print("Hello, World!")

4. Run the program in your IDE.

Contents 14

Updating Python and Pip
Keep your Python and Pip versions up-to-date:

pip install --upgrade pip
pip list --outdated

Contents 15

Your First Python Program (Terminal)
Save the file in a directory (e.g., C:\PythonFiles\Hello\hello.py).

Run it from the terminal:

python hello.py

Contents 16

Variables

Contents 17

Objectives
Understand variables and constants.

Learn Python’s dynamic typing system.

Follow Python’s naming conventions.
Use print() for output and input() for user input.

Check the data type of variables.
Gain practical experience via programming tasks.

Contents 18

What is a Program?
A program is a set of instructions that tells a computer what to do.
Like directions for a robot, a program follows a sequence of steps.

Key Components of Programs:

1. Input: Get data (keyboard, file, etc.).

2. Output: Display data (screen, file, etc.).
3. Operators: Perform math and logic operations.

4. Conditionals: Check and execute code based on conditions.

5. Repetition: Repeat actions (loops).

Contents 19

Example Program
name = "Alice"
age = 21
PI = 3.14

print("Name:", name)
print("Age:", age)
print("PI:", PI)

user_input = input("Enter something: ")
print("You entered:", user_input)
print("Data type:", type(user_input))

Line 1: What is stored in name ?

Line 6: What does print("Age:",
age) display?

Line 9: What happens when input is
requested?

Line 11: What does
type(user_input) do?

Contents 20

What is a Variable?
A variable is a label for storing data.

Dynamic typing in Python: Data type
determined by value during
execution.

name = "Alice"
age = 21
PI = 3.14

Types of Data:

Line Identifier Value Type

1 name "Alice" String

2 age 21 Integer

3 PI 3.14 Float

Contents 21

Python's Primitive Data Types
1. Integer: whole numbers.

2. Float: numbers with decimals.
3. Bool: True or False .

4. String: a sequence of characters.

Contents 22

Comments in Python
Use # for single-line comments:

This is a comment

Comments are ignored by the interpreter.

Contents 23

Dynamic vs Static Typing

Static typing (e.g., C#):

string name = "Alice";
int age = 21;

Dynamic typing (Python): Variable type is set by value.

Contents 24

Identifiers in Python
Descriptive variable names help code readability.

is_student = True
cumulative_sum = 50

Rules:
Cannot start with a number.

Cannot use Python keywords.

Use underscores for multiple words (snake_case).

Contents 25

Python Keywords

Some reserved keywords in Python include:

and , as , assert , break , class , continue , def , else , if , import ,
lambda , return , etc.

Cannot be used as variable names.

Contents 26

Naming Conventions and PEP8

PEP8 is Python’s style guide for writing clean, readable code.

Use snake_case for variables:

is_student = True

For more, check PEP8 Documentation.

Contents 27

https://pep8.org/

Assigning Values to Variables
Variables can be reassigned to new values.

name = "Alice"
name = "Imran" # Reassigned

Use the assignment operator = to assign values.

Contents 28

Simple Output
Use the print() function to display data:

print("Name:", name)
print("Age:", age)
print("PI:", PI)

Contents 29

Getting User Input

Use input() to capture user input:

user_input = input("Enter something: ")
print("You entered:", user_input)

Data from input() is always a string.

Contents 30

Casting Data Types
Convert user input to different types:

To Integer:
age = int(input("Enter your age: "))

To Float:
price = float(input("Enter price: "))

To String:
str_value = str(42)

Contents 31

Checking Data Type
Use type() to check the data type of a variable:

print("Data type of user input:", type(user_input))

Contents 32

Constants in Python
Constants are values that should not change.

PI = 3.14 # Constant

Python doesn't enforce constants but use UPPERCASE for constant names.

Contents 33

Formal vs. Natural Languages
Natural languages (e.g., English) evolve over time.

Formal languages (e.g., Python) have strict syntax and rules.

Contents 34

The Python Interpreter
Python is an interpreted language (code is executed line by line).

Python code is compiled to bytecode and executed by the Python Virtual Machine
(PVM).

Contents 35

Questions?
What is a variable, and why is it important in programming?

Explain the difference between a variable and a constant.

What does dynamic typing mean in Python?

Contents 36

Operators

Contents 37

Objectives

Understand assignment operator use
Perform calculations using mathematical operators (+, -, *, /, %, //)

Use augmented assignment operators

Apply operator precedence

Work with logical and comparison operators
Modify logical expression evaluation using parentheses

Contents 38

Types of Operators in Python
1. Mathematical operators

2. Comparison operators

3. Logical operators
4. Assignment operator

Contents 39

Example Program

a = 10
b = 5
result = a + b * 2
print("Result 1:", result) # what will be printed here?

result = (a + b) * 2
print("Result 2:", result) # what will be printed hre?

result = a // b
print("Result 3:", result) # what will be printed here?

is_greater = a > b
print("Is a greater than b?", is_greater) # and here?

logical_test = (a > b) and (a < 20)
print("Logical test:", logical_test) # and here

Contents 40

Example Output Predictions

Result 1: 20

Result 2: 30
Result 3: 2

Is a greater than b? True

Logical test: True

Contents 41

Assignment Operator

The assignment operator = assigns a value to a variable.

name = "Simon"
age = 42
print(name, age)

name = "Simon" assigns the value "Simon" to the variable name .

age = 42 assigns the value 42 to the variable age .

Contents 42

Mathematical Operators

Operator Description Example Result

+ Addition 7 + 3 10

- Subtraction 7 - 3 4

* Multiplication 7 * 3 21

/ Division 7 / 3 2.33

Contents 43

Integer Division

Operator Description Example Result

// Floor Division 7 // 3 2

% Modulo (Remainder) 7 % 3 1

Contents 44

Modulo Operator Usage

The modulo operator % returns the remainder from integer division

Really useful e.g. to check if a number divides evenly.

if x % 2 == 0:
 print("x is even")
else:
 print("x is odd")

Contents 45

Exponent Operator

Operator Description Example Result

** Exponent 7 ** 3 343

Contents 46

Augmented Assignment Operators

Shorthand for incrementing or modifying a value:

x = 10
x += 1 # same as x = x + 1

You can use += , -= , *= , /= , and other operators in this way.

Contents 47

Operator Precedence

Order of precedence:

1. Exponentiation: **

2. Multiplication/Division: * , /

3. Addition/Subtraction: + , -

Use parentheses to modify precedence.

Contents 48

Comparison Operators

Operator Description Example Result

== Equal to 7 == 7 True

!= Not equal to 7 != 6 True

> Greater than 7 > 6 True

< Less than 7 < 6 False

>= Greater than or equal 7 >= 7 True

<= Less than or equal 7 <= 7 True

Contents 49

Logical Operators

Operator Description Example Result

and Returns True if all are true (7 > 6) and (4 < 8) True

or Returns True if at least one is true
(10 < 20) or (10 <

5)
True

not
Returns the opposite of a Boolean
value

not(7 > 6) False

Contents 50

Example: Logical Operators

age = 25
is_student = False

if age >= 18 and not is_student:
 print("You are eligible to vote.")

Contents 51

Logical Operator Precedence

Order of precedence:

1. not

2. and

3. or

Use parentheses to alter evaluation order:

result = (True or False) and (not True)

Contents 52

Strings

Contents 53

Objectives

Understand the nature and importance of strings as a fundamental data type.
Create, manipulate, and format strings using various techniques.

Explore common string methods and their applications.

Learn how to index, slice, and find the length of strings.

Understand string immutability.
Gain practical experience through programming tasks related to strings.

Contents 54

Introduction to Strings

Strings are a list of characters, where each character is anything you type in one
keystroke.

This includes letters, numbers, symbols, and even space.

Example:

greeting = "Hello, "
name = "Alice"
full_greeting = greeting + name
print("Full Greeting:", full_greeting)

Contents 55

String Program Example

greeting = "Hello, "
name = "Alice"
full_greeting = greeting + name
print("Full Greeting:", full_greeting) # what will be printed here?

shout = full_greeting.upper()
print("Shout:", shout) # what will be printed here?

whisper = full_greeting.lower()
print("Whisper:", whisper) # what will be printed here?

length = len(full_greeting)
print("Length of Full Greeting:", length) # and here?

first_letter = name[0]
print("First Letter of Name:", first_letter) # and here?

sliced_name = name[1:4]
print("Sliced Name:", sliced_name) # and here?

Contents 56

String Example Output

Full Greeting: Hello, Alice
Shout: HELLO, ALICE

Whisper: hello, alice

Length of Full Greeting: 12

First Letter of Name: A
Sliced Name: lic

Contents 57

What Are Strings?

Strings represent text and are a fundamental data type.
Text can be a single character, word, or entire paragraph.

In Python, strings are a list of characters.

Contents 58

Creating Strings

Strings are enclosed in either single (') or double quotes (").

Example:

'Hello, World!'
"Python is fun"

To include a quote within a string, alternate the quote types:

message = "I don't like Mondays!"

Contents 59

String Operations

The + operator is used for concatenation (joining strings).

Example:

'Hello' + ' ' + 'World' # 'Hello World'

The * operator is used for repetition.

Example:

'Python' * 3 # 'PythonPythonPython'

Contents 60

String Methods

Python has built-in string methods like upper() , lower() , len() , strip() ,
split() , replace() .

Example:

"Python".upper() # 'PYTHON'

Contents 61

find()

The find() method returns the index of a character or substring:

course = "Python for beginners"
course.find('P') # 0
course.find('for') # 7
course.find('Beg') # -1 (case-sensitive)

Contents 62

replace()

Use replace() to substitute parts of a string:

course.replace('Python', 'Java')

Contents 63

String Indexing

Each character has a unique index starting from 0 .

Example:

"Python"[0] # 'P'
"Python"[2] # 't'

Contents 64

String Slicing

Slicing extracts a portion of a string using a range of indices.

Example:

course = "Python"
print(course[0]) # 'P'
print(course[-1]) # 'n'
print(course[0:3]) # 'Pyt'
print(course[0:]) # 'Python'

Contents 65

String Length

Use len() to find the length of a string.

Example:

len("Hello, World!") # 13

Contents 66

Escape Characters

Special characters like newline (\n) and tab (\t) require escape sequences.

Example:

"Hello\nWorld"

Contents 67

Multiline Strings

Multiline strings use triple quotes (''' or """).

Example:

multiline_text = '''
This is a multiline
string in Python.
'''

Contents 68

Printing Strings

There are three common ways to print strings:

first = "Imran"
second = "Khalisa"
print(first + second) # Concatenation
print(first, second) # Comma (adds space)
print(f"{first} {second}") # f-string formatting

Contents 69

String Immutability

Strings are immutable, meaning they cannot be modified after creation.

Any operation on a string creates a new string.

Contents 70

Functions

Contents 71

Objectives

Understand functions and procedures in Python.

Learn the importance and benefits of using functions.

Practice writing and calling functions.

Understand arguments, parameters, and return values.

Contents 72

Example Code

def convert_celsius_to_fahrenheit(celsius):
 return (celsius * 9/5) + 32

def calculate_average(temperatures):
 return sum(temperatures) / len(temperatures)

def greet(name):
 return f"Hello, {name}! Welcome to Climate Quest."

weekly_celsius_temps = [22, 24, 20, 26, 23, 25, 21]
average_temp = calculate_average(weekly_celsius_temps)
print("Average Weekly Temperature (Celsius):", average_temp)

name = "Student"
greeting = greet(name)
print(greeting)

temp_in_fahrenheit = convert_celsius_to_fahrenheit(average_temp)
print("Average Weekly Temperature (Fahrenheit):", temp_in_fahrenheit)

Contents 73

Questions

1. What will convert_celsius_to_fahrenheit(25) return?

2. What does calculate_average() do with the temperatures list?

3. What will be stored in greeting ?

4. What will be printed for the average temperature in Fahrenheit?

Contents 74

Answers

1. convert_celsius_to_fahrenheit(25) returns: 77

2. calculate_average() calculates the average, which is 23.0 for the provided list.

3. greeting stores "Hello, Student! Welcome to Climate Quest."

4. Average temperature in Fahrenheit: 73.4

Contents 75

Syntax of Functions

To define a function in Python:

def function_name():
 # Function body
 pass

def : Define keyword

function_name : Function name

() : Parentheses for parameters

: : Colon to start function body

Indented block: Function body

Contents 76

Function Naming

Use descriptive names for functions to clarify their purpose.

Example: convert_celsius_to_fahrenheit() clearly describes its function.

Contents 77

Function Body and Indentation

def convert_celsius_to_fahrenheit(celsius):
 return (celsius * 9/5) + 32

Function body must be indented.
Indentation shows which code belongs to the function.

Contents 78

Return Values

Functions return values using the return statement:

def convert_celsius_to_fahrenheit(celsius):
 return (celsius * 9/5) + 32

celsius = 24
fahrenheit = convert_celsius_to_fahrenheit(celsius)

The function returns the Fahrenheit value.

Contents 79

Procedures vs Functions

Procedure: A function that performs a task but doesn’t return a value.

Example:

def print_message(message):
 print(message) # Procedure

Function: Returns a value.

Example:

def calculate_area(length, height):
 return length * height

Contents 80

Parameters and Arguments

Parameters: Placeholders in function definition.

Arguments: Values passed when calling the function.

def convert_celsius_to_fahrenheit(celsius): # 'celsius' is a parameter
 return (celsius * 9/5) + 32

fahrenheit = convert_celsius_to_fahrenheit(24) # 24 is an argument

Contents 81

Calling Functions

Call a function using its name followed by parentheses.

def calculate_area(length, height):
 return length * height

area = calculate_area(10, 5) # Function call
print(area) # Output: 50

Contents 82

Default Parameters

Functions can have default parameters:

def greet(name, message="Hello"):
 print(f"{message}, {name}")

greet("Sally") # Output: "Hello, Sally"
greet("Sally", "Hi") # Output: "Hi, Sally"

Contents 83

Keyword Arguments

Use keyword arguments to specify parameters by name:

def calculate_area(length, width):
 return length * width

area = calculate_area(length=5, width=10)

Makes code more readable.

Contents 84

Benefits of Functions

Modular Code: Break problems into smaller pieces.

Avoid Repetition: DRY (Don’t Repeat Yourself).

Easier Debugging: Simplify testing and finding bugs.

Reusability: Functions can be reused in different programs.

Contents 85

Summary

Functions are essential for organizing and reusing code.

They promote readability and maintainability.
Use functions to solve complex problems efficiently.

For a quick reference, check the Functions Cheat Sheet.

Contents 86

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_functions.pdf

Activity

Try modifying this code:

def add(a, b):
 return a + b

def multiply(a, b):
 return a * b

num1 = 10
num2 = 5

sum_result = add(num1, num2)
print("Sum:", sum_result)

product_result = multiply(num1, num2)
print("Product:", product_result)

Change variable values and observe
the output.

Add more functions with different
tasks.

Experiment with returning different
types of values.

Contents 87

Built-in Functions

Contents 88

Objectives

Understand built-in functions in Python.

Learn commonly used functions: print() , len() , input() , etc.

Explore their purposes and usages.

Contents 89

Example Code

user_name = input("Enter your name: ")
print("Hello,", user_name)

sample_string = "Climate"
string_length = len(sample_string)
print("The length of the string is:", string_length)

value = input("Enter a whole number: ")
print(type(value))

value_int = int(value)
print(type(value))

number = -7.25
abs_number = abs(number)
print("The absolute value is:", abs_number)

decimal_number = 3.14159
rounded_number = round(decimal_number, 2)
print("The rounded value is:", rounded_number)

Contents 90

Predictions

1. Line 2: What will input("Enter your name: ") do?

2. Line 6: What does len("Climate") return?

3. Lines 10 & 13: What will type() return for the input and converted values?

4. Line 16: What is the result of abs(-7.25) ?

5. Line 20: What will round(3.14159, 2) return?

Contents 91

Commonly Used Built-In Functions

Function Description Example Output

print()
Displays information on the
screen.

print("Welcome") "Welcome"

len() Returns the length of a string. len("Hello") 5

input()
Takes user input and returns it as
a string.

input("Name: ") -

int() Converts a value to an integer. int("42") 42

float()
Converts a value to a floating-
point number.

float("3.14") 3.14

h d
Contents 92

Activity
age = int(input("Enter your age: "))
print("You are", age, "years old.")

another_string = "Environmental Science"
string_upper = another_string.upper()
string_lower = another_string.lower()
print("Uppercase:", string_upper)
print("Lowercase:", string_lower)

float_number = float(input("Enter a decimal number: "))
rounded_float = round(float_number)
print("Rounded number:", rounded_float)

negative_number = int(input("Enter a negative integer: "))
absolute_value = abs(negative_number)
print("Absolute value:", absolute_value)

Change the string and observe
upper() and lower() methods.

Input a decimal number and see the
rounded result.

Input a negative integer and see the
absolute value.

Contents 93

Selection

Contents 94

Objectives

Understand selection in algorithms and code.

Define the purpose of selection (conditional statements).
Learn if , elif , and else syntax in Python.

Explain relational operators (== , != , > , < , >= , <=).

Review examples of conditional statements.

Understand the role of elif in handling multiple conditions.

Contents 95

Introduction

In programming, selection involves making decisions based on conditions. In Python,
this is implemented with if , elif , and else statements.

if condition:
 # do something
else:
 # do this instead

Contents 96

Example Code

print("Welcome to the Climate Data Analyzer")

temperature = float(input("Enter the temperature in Celsius: "))

if temperature < 0:
 print("It's freezing cold!")
elif temperature >= 0 and temperature <= 20:
 print("The weather is cool.")
elif temperature > 20 and temperature <= 30:
 print("The weather is warm.")
else:
 print("It's hot outside!")

Contents 97

Predictions

Temperature -5°C: What will the program print?
Temperature 15°C: What will the program print?

Temperature 25°C: What will the program print?

Temperature 35°C: What will the program print?

Run the program and compare the output with your predictions.

Contents 98

1. The if Statement

Executes a block of code if the condition is true.

if condition:
 # code to execute if condition is true

Contents 99

2. The elif Statement

Used for additional conditions if the previous if or elif conditions are false.

if condition1:
 # code if condition1 is true
elif condition2:
 # code if condition2 is true

Read elif as "else if".

Contents 100

3. The else Statement

Fallback option if none of the preceding conditions are true.

if condition:
 # code if condition is true
else:
 # code if condition is false

Contents 101

4. Conditions

Conditions are Boolean expressions that evaluate to True or False , using relational
operators:

1. Equal to (==)

2. Not equal to (!=)

3. Greater than (>)

4. Less than (<)

5. Greater than or equal to (>=)

6. Less than or equal to (<=)

Combine conditions with and , or , and not for complex expressions.

Contents 102

Example 1: Basic if Statement

age = 16
if age >= 18:
 print("You can vote!")

Contents 103

Example 2: if-elif-else Statement

score = 85
if score >= 90:
 print("A")
elif score >= 80:
 print("B")
else:
 print("C")

Contents 104

Modify the following program:
print("Welcome to the Advanced Climate Data Analyzer")

temperature = float(input("Enter the temperature in Celsius: "))
humidity = int(input("Enter the humidity percentage: "))

if temperature < 0:
 print("It's freezing cold!")
elif temperature >= 0 and temperature <= 20:
 if humidity > 80:
 print("The weather is cool and humid.")
 else:
 print("The weather is cool.")
elif temperature > 20 and temperature <= 30:
 if humidity > 60:
 print("The weather is warm and humid.")
 else:
 print("The weather is warm.")
else:
 if humidity > 40:
 print("It's hot and humid outside!")
 else:
 print("It's hot outside!")

Add a condition for temperatures
above 35 degrees.

Change humidity thresholds and
observe the output.

Contents 105

Summary

Cheat sheet for selection (and iteration)

Contents 106

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_if_while.pdf

Iteration

Contents 107

Objectives

Define iteration and its importance in programming.

Understand loops as fundamental elements of iteration.

Differentiate between for and while loops.

Explain the purpose of the range() function in for loops.

Iterate over sequences (lists, tuples, strings) with for loops.

Understand and use nested for loops.

Compare for loops and while loops.

Contents 108

Introduction

Iteration, or looping, executes a block of code repeatedly. Without iteration, tasks like
printing numbers 1 through 10 would be tedious. Loops simplify such tasks.

Example of repetitive printing without a loop:

print(1)
print(2)
print(3)
etc.

Loops make this much easier.

Contents 109

Example Code

print("Counting using for loop:")
for i in range(1, 6):
 print(i)

print("\nCounting using while loop:")
count = 1
while count < 6:
 print(count)
 count += 1

Predict the output for:

for loop

while loop

Run the code and compare actual results
with your predictions.

Contents 110

The for Loop

A for loop, or counted loop, repeats a set number of times. You specify the start and
stop values:

for i in range(1, 11):
 print(i) # prints values from 1 to 10

range() Function Variations

range(10) : Starts at 0, ends at 9.

range(1, 20, 2) : Starts at 1, ends before 20, increment by 2.

Contents 111

Iterating Over Sequences

for loops can iterate over sequences like lists, tuples, and strings:

colours = ["red", "brown", "white", "black"]
for item in colours:
 print(item)

phrase = "Hello, World!"
for ch in phrase:
 print(ch)

Contents 112

Nested for Loops

A loop inside another loop:

for i in range(0, 2):
 for j in range(1, 3):
 print(i, j)

Output:

0 1
0 2
1 1
1 2

Understand why this is the output.

Contents 113

The while Loop

A while loop is a conditional loop that runs as long as a condition is True :

i = 1
while i <= 10:
 print(i)
 i += 1

Initialize the control variable.

Check the condition.

Update the control variable.

Contents 114

Example 1: for Loop

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
 print(f"I like {fruit}")

Contents 115

Example 2: while Loop

count = 1
while count <= 5:
 print(f"Count: {count}")
 count += 1

Contents 116

Modify the following program:
Modified example with nested loops and sequence iteration
print("Multiplication table using nested for loops:")
for i in range(1, 4):
 for j in range(1, 4):
 print(i * j, end=' ')
 print()

print("\nIterating over a string with for loop:")
text = "Python"
for char in text:
 print(char)

print("\nCounting down using while loop:")
count = 5
while count > 0:
 print(count)
 count -= 1

Tasks:

Change the range of the
multiplication table.

Iterate over a list of numbers.
Use a while loop to count from 1 to
5.

Print all even numbers between 1 and
100 using a while loop.

Contents 117

Summary

Cheat sheet for iteration (and selection)

Contents 118

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_if_while.pdf

Turtle Programming

Contents 119

Objectives

Define Turtle graphics and its role in programming.

Basic turtle movements and functions.
Use loops and functions to draw shapes.

Change turtle and screen properties.

Create custom projects using Turtle.

Contents 120

Getting Started with Turtle
import turtle
s = turtle.getscreen()
t = turtle.Turtle()
s.exitonclick()

turtle : A pre-installed Python library for drawing.

Turtle moves on a virtual canvas.

Turtle draws using functions like forward() , right() , goto() .

Contents 121

Basic Turtle Movements
t.right(90) # turn right
t.forward(100) # move forward
t.left(90) # turn left
t.goto(50, 200) # go to coordinates
t.home() # return to center

forward() , backward() , right() ,
left() for movement.

goto(x, y) for direct positioning.

Contents 122

Drawing Shapes

Exercise 1:

Draw a square, triangle, and circle using loops.

for _ in range(4):
 t.forward(100)
 t.right(90)

Use loops for repetitive shapes.

t.circle() draws circles, t.dot() draws filled circles.

Contents 123

Combine Shapes into a Picture

Exercise 2:

Draw a house using rectangles and triangles.

Use loops to modularize code.

Functions prevent code repetition (e.g., for drawing windows).

def draw_rectangle():
 for _ in range(2):
 t.forward(100)
 t.right(90)
 t.forward(50)
 t.right(90)

Contents 124

Customizing the Canvas
t.bgcolor("blue") # Change background color
t.pensize(5) # Change pen size
t.pencolor("green") # Change pen color

Customize the turtle's appearance with shapesize() , fillcolor() .

Use bgcolor() to set canvas color, and hex codes for custom colors.

Contents 125

Pick Up and Put Down the Pen
t.penup() # Pick up pen (no drawing)
t.goto(0, 100) # Move turtle without drawing
t.pendown() # Start drawing again

Use penup() and pendown() to control drawing paths.

Contents 126

Loops and Conditionals with Turtle
n = 10
while n <= 40:
 t.circle(n)
 n += 10

Python loops (for , while) and conditionals work with Turtle.

Combine logic and Turtle drawing to create dynamic patterns.

Contents 127

Exercise 3: Colorful Spiral
Create a colorful spiral with varying colors and angles.

colors = ["red", "blue", "green"]
for i in range(50):
 t.pencolor(colors[i % 3])
 t.forward(i * 10)
 t.right(144)

Contents 128

Exercise 4: Turtle Race
Create a race between two
turtles moving randomly.

Each turtle moves a random
distance with every step.

import random
t.forward(random.randint(1, 20))

Contents 129

Random Walk Example
import random
while True:
 t.goto(random.uniform(-200, 200), random.uniform(-200, 200))
 t.dot(5)

Use random movement to simulate a random walk on the canvas.

Contents 130

Summary of Turtle Commands
Movement: forward() , right() , goto()

Pen Control: penup() , pendown() , pencolor()

Loops: Use for and while for repetitive drawing.

Custom Functions: Modularize your code with functions.

Contents 131

Final Example: Turtle Random Walk
import turtle, random
t = turtle.Turtle()
while True:
 t.goto(random.uniform(-200, 200), random.uniform(-200, 200))
 t.dot(5)

Contents 132

Programming Tasks
Draw a house using functions.

Create a colorful spiral pattern.

Develop a Turtle race game.

Contents 133

Lists

Contents 134

Objectives

Define lists and their usefulness.
Create and access lists in Python.

Use indexing and loops with lists.

Perform operations like append() , remove() , and index() .

Modify lists and use list methods.

Contents 135

Why Lists?

Without lists
capital1 = "London"
capital2 = "New York"
With a list
capital_cities = ["London", "New York", "Paris", "Canberra"]

Lists store collections under one variable.

Lists are mutable – items can be added, changed, or removed.

Contents 136

Example

Example program with basic list operations
fruits = ["apple", "banana", "cherry"]
print("Original list:", fruits) # what will be printed here?

fruits.append("orange")
print("List after appending 'date':", fruits) # and here?

mixed_list = ["text", 42, 3.14, True]
print("Mixed type list:", mixed_list) # and here?

for item in mixed_list:
 print(item) # what will be printed here?

nested_list = [[1, 2, 3], ["a", "b", "c"]]
print("Nested list:", nested_list) # what will be printed here?

Contents 137

Creating Lists

empty_list = []
fruits = ["apple", "banana", "cherry"]
numbers = [1, 2, 3, 4, 5]
mixed_list = [1, "hello", 3.14]

Use [] to initialise the lis

Use a meaningful identifier for the list

Lists can hold mixed data types.

Lists can be nested within other lists.

Contents 138

Accessing List Items

fruits = ["apple", "banana", "cherry"]
favourite_fruit = fruits[2] # "cherry"

Lists use 0-based indexing.
Negative indexing starts from the end of the list.

Contents 139

Iterating Through a List

for fruit in fruits:
 print(fruit) # "apple", "banana", "cherry"

Loop through lists using a for loop to access each item.

Contents 140

Modifying Lists

fruits.append("orange") # Adds "orange"
fruits[0] = "grape" # Replaces "apple" with "grape"
numbers.remove(4) # Removes value 4

Lists are mutable, allowing changes using indexing or list operations like
append() , remove() , insert() , etc.

Contents 141

List Slicing

sublist = numbers[1:4] # Extracts elements 1, 2, and 3
partial = fruits[:2] # Extracts first two elements

Use slicing to extract parts of a list.
Omitting the start or end index gives all elements before or after that index.

Contents 142

Common List Operations

my_list.append(4) # Add an item
my_list.extend([5, 6]) # Extend with another list
my_list.clear() # Clear the list

List methods include: append() , extend() , remove() , clear() , sort() , and
pop() .

Contents 143

Checking for List Membership

if "apple" in fruits:
 print("Found apple!")

Use in to check if an item is in the list.

Get the index of an item using index() .

Contents 144

Lists vs Strings

str = "hello"
str_list = list(str) # ['h', 'e', 'l', 'l', 'o']

Convert a string to a list using list() .

Contents 145

Example: List Operations

Creating a list of numbers
my_numbers = [10, 20, 30]
my_numbers[2] = 35 # Modify element
my_numbers.append(60) # Add element

Slicing the list
subset = my_numbers[1:4]

Check for membership
if 25 in my_numbers:
 print("25 is in the list")

Contents 146

Activity

Insert a new fruit into the second position of the fruits list.

Remove an element from the mixed_list .

Add a new element to one of the sublists in nested_list .

Contents 147

Summary

Lists are ordered collections that can hold various data types.

Lists are mutable and can be modified during runtime.
Lists can be used to implement stacks, queues, or nested structures.

Cheat Sheet for Lists

Contents 148

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_lists.pdf

2D Lists in Python

Contents 149

Objectives

Define 2D lists and their role in representing tabular data.

Create and manipulate 2D lists.

Access elements with two indices.

Iterate through 2D lists with loops.

Contents 150

What is a 2D List?

A 2D list is a list of lists, representing rows and columns.

Useful for tabular data like spreadsheets.

Example:

matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Contents 151

Accessing Elements

Use two indices: matrix[row][column]

Python uses 0-based indexing.

Example:

element = matrix[1][2] # 6

Contents 152

Modifying 2D Lists

Modify elements by accessing with two indices.

Example:

matrix[0][0] = 10

Before:

[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

After:

[10, 2, 3]
[4, 5, 6]
[7, 8, 9]

Contents 153

Looping Through 2D Lists

Nested loops to iterate through rows and columns:

for row in matrix:
 for element in row:
 print(element)

Contents 154

Activity

Make the following changes to the matrix:

1. Change element at row 3, column 1 to 11.

2. Add a new row to the matrix.

3. Remove the second row.

Contents 155

Example: Address Book

Create an address book using a 2D list:

address_book = [
 ["Alice", "09876 444555", "alice@example.com"],
 ["Bob", "01287 655444", "bob@hotmail.co.uk"]
]

Contents 156

Adding a New Friend

Option 2: Add new friend to address book

To add an item, use append() :

name = input("Enter name: ")
phone = input("Enter phone: ")
email = input("Enter email: ")
address_book.append([name, phone, email])

Contents 157

Finding a Friend

Option 1: Search for friend by name

Iterate over the items in the list, looking for the friend by name :

def find_friend(name):
 for friend in address_book:
 if friend[0] == name:
 print(friend)
 return
 print("Friend not found")

a function is useful here

Contents 158

Dictionaries in Python

Contents 159

Objectives

Differentiate between dictionaries and lists.

Define a dictionary using {} or dict() .

Understand key immutability and uniqueness.

Access values using keys.

Use methods like keys() , values() , items() .

Contents 160

What is a Dictionary?

A dictionary holds key-value pairs.

Keys can be any immutable type (e.g., strings, numbers).

Think of it like an English-French dictionary:
Key: 'house'

Value: 'la maison'

Contents 161

Example: Dictionary

climate_data = {
 "temperature": 22,
 "humidity": 45,
 "wind_speed": 15
}
print(climate_data["temperature"]) # 22

Modify values: climate_data["temperature"] = 25

Add key-value pairs: climate_data["rainfall"] = 37

Contents 162

Dictionary Basics

Defined using {} or dict() .

Keys are unique and immutable.
Values can be any type (strings, lists, other dictionaries).

Empty dictionary
empty_dict = {}

Dictionary with key-value pairs
climate_data = {"temperature": 22, "humidity": 45}

Contents 163

Accessing Values

Use square brackets with the key:

print(climate_data["humidity"]) # Output: 45

Raises KeyError if the key is not found.

Contents 164

Modifying & Adding Entries

Modify values: climate_data["humidity"] = 41

Add new pairs: climate_data["rainfall"] = 37

Contents 165

Dictionary Methods

keys() : Retrieve keys

values() : Retrieve values

items() : Retrieve key-value pairs

keys = list(climate_data.keys()) # ['temperature', 'humidity', 'wind_speed']
values = list(climate_data.values()) # [22, 45, 15]

Contents 166

Iterating Through a Dictionary

Iterate over keys
for key in climate_data:
 print(key, climate_data[key])

Iterate over key-value pairs
for key, value in climate_data.items():
 print(key, value)

Contents 167

Checking Key Existence

Use in or get() :

if "humidity" in climate_data:
 print(climate_data["humidity"])

rainfall = climate_data.get("rainfall", "Not found")

Contents 168

Activity

1. Add a new key-value pair for precipitation.

2. Remove a key-value pair.

3. Update an existing value.

4. Iterate through the dictionary and print key-value pairs.

Contents 169

Example: Book Dictionary

book = {
 "title": "Python Crash Course",
 "author": "Eric Matthes",
 "pages": 544,
 "year": 2015
}

print(book["title"]) # Python Crash Course

Contents 170

Summary

Use {} or dict() to create dictionaries.

Access, modify, and add elements using keys.

Use built-in methods for common operations.

Cheat Sheet for Dictionaries

Contents 171

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_dictionaries.pdf

Questions

What are the advantages of dictionaries over lists?
How would you check if a key exists in a dictionary?

What methods retrieve keys, values, and items from a dictionary?

Contents 172

Tuples

Contents 173

Objectives

Understand tuples' immutability compared to lists.

Learn tuple creation and accessing elements.

Recognize tuple use cases for grouping related, unchangeable data.

Apply relational operators for tuple comparisons.

Contents 174

Tuple Basics

A tuple is an immutable sequence of values, indexed by integers.

Typically used to group related, unchangeable data.
Created using parentheses () or the tuple() constructor.

climate_info = ("Sunny", 25, 45)
empty_tuple = tuple()

Contents 175

Accessing and Slicing Tuples

Index elements like lists using 0-based indexing .

weather = climate_info[0] # Output: "Sunny"
temp_slice = climate_info[1:] # Output: (25, 45)

You cannot modify tuple elements. Attempting to do so raises a TypeError .

Contents 176

Tuple Use Cases

Useful for data that should not change, e.g., coordinates (x, y) , date/time
(year, month, day) .

Relational operators work pairwise for comparisons.

>>> (3, 7, 9) < (3, 6, 8) # Output: False

Contents 177

Tuple Assignment

Tuples can be unpacked for convenient variable assignment:

email = 'peter.davies@gmail.com'
username, domain = email.split('@')

Can also be used for swapping variables:

b, c = c, b

Contents 178

Tuples in Dictionaries

Dictionaries return lists of tuples when using .items() .

for key, value in climate_data.items():
 print(key, value)

Useful for sorting or processing key-value pairs.

Contents 179

Returning Tuples

Functions can return multiple values using tuples.

def get_name_and_age():
 return "Alice", 25

name, age = get_name_and_age()

Contents 180

Activity

Modify the example code:

1. Attempt to change an element in a tuple.

2. Create a new tuple with updated values.

3. Combine tuples.
4. Iterate and print each tuple element.

Contents 181

Exceptions

Contents 182

Objectives

Define exceptions as events disrupting the program flow.
Identify common exceptions: ValueError , TypeError , IndexError ,
NameError , ZeroDivisionError .

Use try...except blocks to handle exceptions.

Understand specific and generic except blocks.

Contents 183

What are Exceptions?

Exceptions disrupt the normal flow of a program, triggered by errors like invalid
input or division by zero.

Example Code

def divide_numbers(a, b): return a / b
def get_element(lst, index): return lst[index]
def convert_to_int(value): return int(value)

print(divide_numbers(10, 0)) # ZeroDivisionError
print(get_element([1, 2, 3], 5)) # IndexError
print(convert_to_int("abc")) # ValueError

Contents 184

Handling Exceptions

def divide_numbers(a, b):
 try:
 return a / b
 except ZeroDivisionError:
 print("Error: Division by zero.")
 return None
 finally:
 print("Execution complete.")

Key Concepts

try: Contains code that may raise exceptions.

except: Catches and manages specific/general exceptions.

finally: Executes after the try/except, regardless of errors.

Contents 185

Activity

Modify the example code to handle:

1. Division by zero.

2. Out-of-range index access.

3. Invalid string-to-integer conversion.

Example code structure
def get_element(lst, index):
 try:
 return lst[index]
 except IndexError:
 print("Index out of range")
Apply similar structure for other functions.

Contents 186

Types of Exceptions

ValueError

Occurs when a function receives the correct type but inappropriate value.

int("abc") # ValueError: invalid literal for int()

Contents 187

TypeError

Raised when an operation is applied to an object of the wrong type.

5 + "2" # TypeError: unsupported operand types

Contents 188

IndexError

Occurs when accessing a list/sequence index that doesn't exist.

lst = [1, 2, 3]
print(lst[5]) # IndexError: list index out of range

Contents 189

NameError

Raised when a variable or function name is not found.

print(variable) # NameError: name 'variable' is not defined

Contents 190

ZeroDivisionError

Occurs when attempting to divide by zero.

x = 10 / 0 # ZeroDivisionError: division by zero

Contents 191

Generic Exception Handling

try:
 # Code that may raise an exception
except:
 print("An error occurred.")

Best practice is to specify exception types to assist debugging.

Contents 192

Multiple Exceptions

try:
 # Code that may raise an exception
except (IndexError, ValueError, TypeError):
 print("Caught specific exception types.")

Alternatively, use multiple except blocks for different exception handling.

Contents 193

The finally Block

Executes regardless of exceptions. Useful for cleanup tasks like closing files.

try:
 # Code that may raise an exception
finally:
 # Always executed

Contents 194

Raising Exceptions

Use raise to trigger exceptions manually.

if unit != "C" and unit != "F":
 raise ValueError(f"Invalid unit: {unit}")

Contents 195

Summary

Cheat sheet for exceptions (and files){:class=md-button}

Contents 196

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_files_exceptions.pdf

Files

Contents 197

Objectives

Differentiate between text and binary files.

Understand file modes and the open() function.

Learn to read from and write to text files.

Explore resource management and file handling techniques.

Contents 198

Text Files vs Binary Files

Text Files:

Human-readable, encoded in ASCII or UTF-8.
Line-based, terminated by newline characters (\n or \r\n).

Binary Files:

Encoded in binary format, not human-readable.

Used for images, audio, executables.

Contents 199

Example: Basic File Operations

file = open("example.txt", "w")
file.write("Hello, World!")
file.close()

file = open("example.txt", "a")
file.write("\nThis is a new line.")
file.close()

file = open("example.txt", "r")
content = file.read()
print(content)
file.close()

Contents 200

Handling File Errors

File Not Found: Wrap open() in try...except .

Resource Management: Always close files or use with open() .

Contents 201

Opening and Reading Files

Basic Opening

file = open('example.txt', 'r')
content = file.read()
file.close()
print(content)

Contents 202

Opening and Reading Files

Iterating Over Lines

file = open('example.txt', 'r')
for line in file:
 print(line)
file.close()

Contents 203

Opening and Reading Files

Using with open()

with open('example.txt', 'r') as file:
 content = file.read()
print(content)

Writing to Files

Write Method

with open('example.txt', 'w') as file:
 file.write('Hello, World!')

Contents 204

Write Method

Append Method

with open('example.txt', 'a') as file:
 file.write("\nAdditional line.")

Contents 205

Write Method

Writing Binary Data

with open('binary_data.bin', 'wb') as file:
 file.write(b'\x48\x65\x6c\x6c\x6f')

Contents 206

Summary of Methods

Reading: read() , readline() , readlines() , Iterating

Writing: write() , writelines() , print(file=file)

Appending: Use 'a' mode

Contents 207

Summary & Resources

Cheat sheet for exceptions (and files)

Contents 208

file:///C:/Users/dell%20touch/Documents/GitHub/mkdocs-gcse/docs/files/beginners_python_cheat_sheet_pcc_files_exceptions.pdf

