GCSE

Computer Networks

Contents

Contents

- Introduction to Networking
- Wired vs Wireless
- Topologies
- The Internet
- Protocols

Introduction to Networking

Objectives

- Define a computer network.
- Discuss the pros and cons of computer networks.
- Identify network types: PAN, LAN, WAN.
- Define the Internet and its distinction from the WWW.

What is a Computer Network?

- A **computer network** is a system where devices are connected to share resources like:
 - \circ Applications
 - \circ Files
 - Hardware (e.g. printers)
- Devices connect via cables or wireless technology, allowing data transfer.

Server and Client

- Server: A powerful central computer providing services (e.g., email, file storage).
- **Client**: A computer connected to the server.
- **Standalone**: A computer not connected to any network.

Advantages of Networks

1. Resource Sharing

- Files, printers, databases, and tools can be shared.
- Examples:
 - **Files**: Shared folders for collaboration.
 - **Printers**: Shared high-quality office printers.
 - **Shared Databases**: Centralized customer information.

2. Communication

- Facilitates email, instant messaging, video conferencing.
- Example: Internal networks (LAN) for efficient department communication.

3. Centralized Data Management

- Data is managed centrally, reducing duplication.
- Includes file servers, NAS, and controlled access permissions.

GCSE Disadvantages of Networks

1. Security Concerns

- Unauthorized access, malware, man-in-the-middle attacks.
- Example: Password sniffing compromises user accounts.

2. Dependency

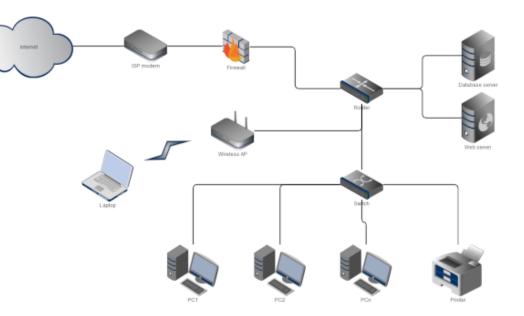
- System failure affects multiple users.
- **Example**: A single server failure impacts the whole network.

3. Cost

- High setup and maintenance costs.
- Security, scalability, and emergency costs add financial burden.

Types of Networks

Personal Area Network (PAN)


- **Size**: Small, personal space (e.g., phone, laptop, earbuds).
- Range: Limited (e.g., Bluetooth).

Local Area Network (LAN)

- **Size**: Covers a small area (e.g., home, office, school).
- **Control**: Managed by one organization.

Wide Area Network (WAN)

- Size: Covers large geographical areas.
- Example: The Internet.
- Connects multiple LANs (e.g., company branches globally).

The Internet is ...

- A global network of interconnected computers.
- Decentralized, meaning no single point of control.
- Communication occurs through standard protocols like TCP/IP.

Internet Control and Regulation

- Some governments control internet access for political, security, or cultural reasons.
- Methods include **censorship**, **ISP regulation**, **data localization**.

The World Wide Web (WWW)

- Internet: The infrastructure, the physical network of computers.
- WWW: A service running on the Internet, accessed via web browsers using HTTP.

Wired and Wireless Networks

Objectives

- Compare technology for implementing wired and wireless networks.
- Discuss advantages and disadvantages of both.
- Explore cables used in wired networking, including copper and fibre.
- Understand Bluetooth technology.



Wired LAN

- Uses physical Ethernet cables.
- Ethernet cables consist of 4 pairs of twisted copper wires with RJ45 connectors.
- **Categories**: Cat5, Cat6, Cat7, and Cat8 each offering different data transfer speeds and interference resistance.
- Wired connections provide high reliability and faster data speeds but require extensive cabling.

GCSE Ethernet Cables

- Ethernet cables use **twisted-pair** wires to reduce interference.
- **RJ45 connectors**: 8 pins that correspond to the 8 wires in the cable.
- Shielded vs Unshielded: Shielded cables protect from interference.
- Categories:
 - Cat5: Up to 100 Mbps.
 - Cat6: Up to 1 Gbps.
 - Cat6a: Up to 10 Gbps.

Ethernet Protocol

- Carrier Sense Multiple Access with Collision Detection (CSMA/CD) governs Ethernet communication.
- Devices listen for a clear network before transmitting data.
- Data is sent in **frames**, containing MAC addresses and error-checking information.

Ethernet frame

Wireless LAN (Wi-Fi)

- Uses radio waves to transmit data.
- Wi-Fi operates on 2.4 GHz and 5 GHz frequency bands.
- Components:
 - Wireless Access Points (WAPs): Transmit data wirelessly.
 - Wireless Network Interface Cards (NICs): Enable devices to connect to the network.
- Governed by IEEE 802.11 standards (latest: 802.11be).

Wireless Protocols & Security

- Wi-Fi: Wireless Fidelity, allows wireless internet connection.
- **Bluetooth**: Short-range wireless technology for connecting devices.
- Encryption: WPA2 and WPA3 protocols secure wireless data to prevent unauthorized access.

Comparing Wired and Wireless Networks

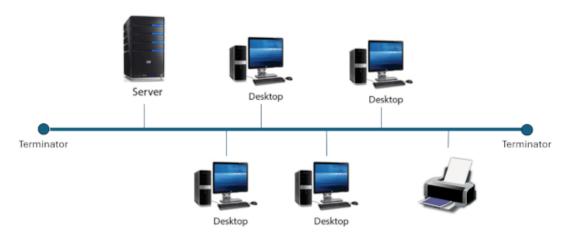
	Wired	Wireless
Speed	Faster, more reliable	Slower, prone to interference
Cost	Expensive, requires extensive cabling	Cheaper, but may need multiple WAPs
Security	More secure	Less secure, susceptible to attacks
Mobility	Limited	High mobility, no cables needed
Reliability	High	Lower reliability

Hybrid Networks

- Most networks today combine both wired and wireless components.
- Desktops are usually wired for stability, while portable devices like laptops use wireless connections for mobility.

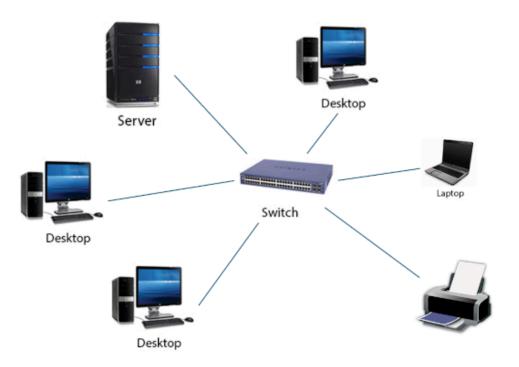
Here's a set of condensed slides structured for a MARP presentation format based on the notes:

Topologies



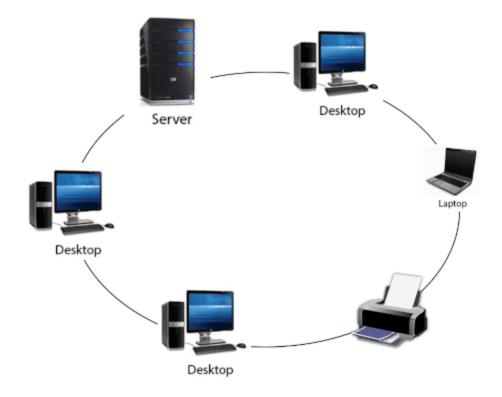
- Objectives:
 - Define network topologies and their importance.
 - Describe and compare:
 - Bus
 - Star
 - Ring
 - Mesh
 - $\circ\,$ Apply topology concepts to real-world cases.

Bus Topology


- Single communication path shared by all devices.
- Data collisions common; devices wait after a collision.
- Terminators absorb signals at the bus ends.
- **Cost-effective** for small networks but limited scalability.
- Failing bus disrupts the whole network.

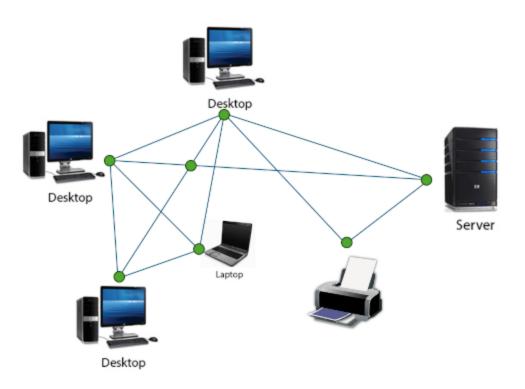
Star Topology

- Central hub connects all devices.
- Devices communicate through hub/switch.
- Hub: broadcasts data to all devices.
- Switch: sends data directly to the intended recipient.
- Failure of hub/switch disrupts the entire network.
- **Common** in modern LANs due to ease of expansion and reliability.


Hubs vs Switches

- Hub:
 - Relays messages to all devices (like a logical bus).
- Switch:
 - $\circ~$ Sends data only to the intended device.
 - Maintains a MAC address table for efficient communication.
 - **Switches** improve performance and reduce network congestion.

Ring Topology


- Devices form a circular connection.
- Unidirectional or bidirectional data flow.
- No collisions due to controlled communication paths.
- Token ring: communication occurs when a device holds the token.
- Fault tolerance: data can travel in the opposite direction if a device fails.

Mesh Topology

- Full mesh: All devices connected to every other device.
- Partial mesh: Only some devices interconnect.
- **Highly redundant**: Multiple communication paths improve fault tolerance.
- Expensive and complex for large networks.

Selecting the Right Topology

- Small Office: Star topology for simplicity.
- University Campus: Backbone bus + star for scalability.
- Home Wi-Fi: Wi-Fi mesh for seamless, reliable coverage.

The Internet

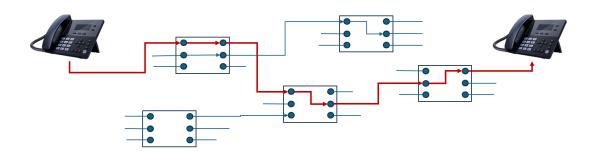
Objectives

- Understand the structure of the Internet
- Understand packet switching and routers
- Identify the main components of a packet
- Define router, gateway, and their uses
- How is routing achieved?
- Define URL, FQDN, domain name, IP address
- Explain the services of an Internet service registry

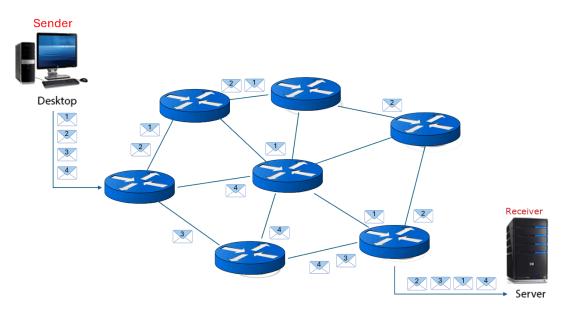
Brief History

In 1961, Leonard Kleinrock conceptualized ARPANET, the predecessor to the Internet. He introduced the **packet-switching network**, a key component of today's **Internet**, the largest **Wide Area Network (WAN)** globally.

Internet Service Providers (ISPs)


Access to the Internet is provided by ISPs, classified into three tiers:

- Tier 1: Backbone, handles intercontinental traffic
- Tier 2: Regional, connects Tier 1 to Tier 3
- Tier 3: Local providers, "last mile" to homes/businesses


Packet Switching

Circuit Switching

Fixed, physical path, like a phone line.

Packet Switching

Connectionless, data is split into packets sent independently.

How Packets Travel

Packets are routed individually across networks via routers, which determine the next path based on the destination address.

- Different packets from the same message may take different routes.
- The **tracert** command shows the path a packet takes.

\$ tracert www.google.com

Traceroute example

\$ tracert www.google.com Tracing route to www.google.com [216.58.204.228] over a maximum of 30 hops:

1	2 ms	1 ms	1 ms	ZyXEL.Home [192.168.1.1]
2	7 ms	7 ms	6 ms	172.16.15.61
3	12 ms	13 ms	12 ms	133.hiper04.sheff.dial.plus.net.uk [195.166.143.133]
4	11 ms	11 ms	12 ms	132.hiper04.sheff.dial.plus.net.uk [195.166.143.132]
5	14 ms	11 ms	10 ms	195.99.125.140
6	12 ms	14 ms	11 ms	194.72.16.72
7	13 ms	11 ms	11 ms	109.159.253.3
8	15 ms	14 ms	14 ms	216.239.40.87
9	14 ms	14 ms	12 ms	172.253.71.201
10	14 ms	14 ms	14 ms	par21s06-in-f228.1e100.net [216.58.204.228]

What's Inside a Packet?

Packets contain:

- 1. Source/Destination Address: IP address and port.
- 2. **Sequencing**: Ensures proper order of reassembly.
- 3. Acknowledgment: Confirms receipt.
- 4. Error Detection: Checks data integrity.
- 5. Hop Limit: Prevents endless looping.

6. Payload: Actual data.

IP Addresses

- IPv4: 32-bit (e.g., 192.168.1.1)
- IPv6: 128-bit (future standard)

\$ ipconfig

GCSE ipconfig example

\$ ipconfig enp3s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 192.168.1.11 netmask 255.255.255.0 broadcast 192.168.1.255 inet6 fe80::b738:3e6d:499b:7355 prefixlen 64 scopeid 0x20<link> ether 10:78:d2:a0:d4:5a txqueuelen 1000 (Ethernet) RX packets 41413 bytes 44775166 (44.7 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 24078 bytes 3004699 (3.0 MB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536 inet 127.0.0.1 netmask 255.0.0.0 inet6 ::1 prefixlen 128 scopeid 0x10<host> loop txqueuelen 1000 (Local Loopback) RX packets 8552 bytes 581418 (581.4 KB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 8552 bytes 581418 (581.4 KB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Public vs Private IP Addresses

- Public IP: Globally routable on the Internet.
- **Private IP**: Reserved for internal networks; non-routable online.

Range	Address Space	Total Addresses
10.0.0/8	10.0.0.1 - 10.255.255.255	16.7 million
172.16.0.0/12	172.16.0.1 - 172.31.255.254	1 million
192.168.0.0/16	192.168.0.1 - 192.168.255.254	65,536

Domain Name System (DNS)

- DNS translates domain names (e.g., bbc.co.uk) into IP addresses.
- Organised hierarchically with top-level domains like .com, .gov, .uk.

Top Level Domain	Description
.com	Commercial
.gov	Government
.org	Organization
.uk	United Kingdom

Fully Qualified Domain Names (FQDN)

A domain name with a specific host:

- bbc.co.uk → www.bbc.co.uk (web server)
- mail.bbc.co.uk (mail server)

Using Python to Find IP address

```
import socket
host = 'bbc.co.uk'
ip = socket.gethostbyname(host)
print(f"{host} IP Address: {ip}")
```


Internet Registries

- ICANN and IANA manage the global assignment of domain names and IPs.
- **Regional Internet Registries (RIR)** allocate resources by region (e.g., Nominet for the UK).
- Use services like nominet.uk/whois to check domain availability.

```
import socket
hostname = 'bbc.co.uk'
ip_address = socket.gethostbyname(hostname)
print(f"The IP address of {hostname} is: {ip_address}")
```


Summary

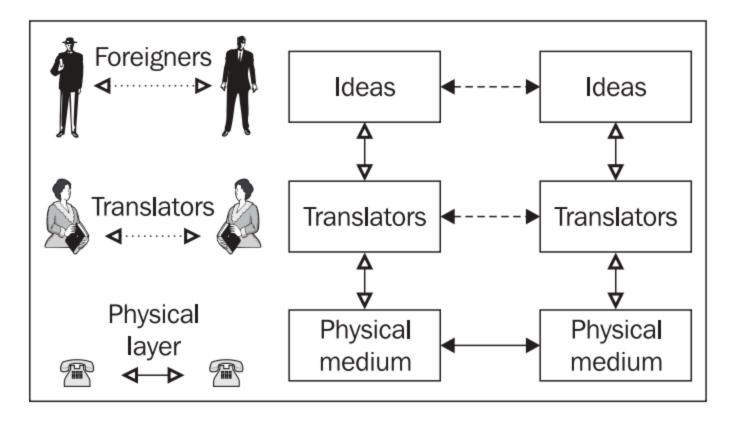
- The Internet relies on packet switching for efficient data transfer.
- IP addresses and DNS ensure unique identification and name-to-address translation.
- ISPs provide access in a tiered structure, while registries manage IP/domain assignments.

Protocols

Objectives

- Define the term network protocol
- Explain the purpose and use of common network protocols:
 Ethernet, Wi-Fi, TCP, UDP, IP, HTTP, HTTPS, FTP, SMTP, IMAP
- Describe the 4-layer TCP/IP model
- Understand which protocols operate at which layers:
 - Application, Transport, Internet

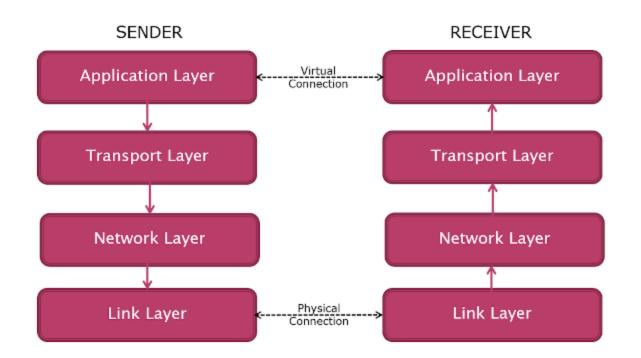
What is a Protocol?


- **Protocol**: Set of rules governing how data is transmitted and received between devices.
 - **Purpose**: Ensure standardized communication
 - Examples:
 - TCP (reliable, ordered delivery)
 - UDP (fast, but no guarantee of delivery)
 - IP (addressing and routing)
 - HTTP (web data transfer)
 - FTP (file transfer)

TCP/IP Overview

- Developed in the 1970s by Vint Cerf and Bob Kahn
- Goals:
 - Network connectivity
 - Decentralization
 - Error recovery
- Divided into layers:
 - Application, Transport, Network, Link
- Conceptual model hides underlying network complexities

Communication



TCP/IP Layers

- Application Layer: Protocols (HTTP, FTP, SMTP) interact with software
- Transport Layer: TCP/UDP ensure data is delivered correctly
- Network Layer: IP handles routing and addressing
- Link Layer: MAC addressing, physical transmission

TCP/IP layers

Application Layer Protocols

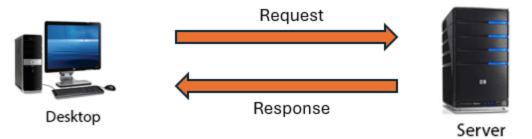
- HTTP: Web communication (port 80)
- **SMTP**: Email sending (port 25)
- **FTP**: File transfer (port 21)
- Logical layer where applications exchange messages
 - Types: Requests, responses, etc.
 - Syntax: Defines message structure

Transport Layer

- Ensures data delivery between application processes
- TCP: Reliable, ordered, error-checked
- UDP: Fast, no guarantees, used for streaming
- Adds port numbers to ensure correct delivery
 - Ports identify protocols (e.g., HTTP uses port 80)

Internet Layer

- Routes data to its destination
- Adds IP addresses (source, destination)
- Protocols:
 - IP: Handles packet transmission
 - **ICMP**: Error reporting and diagnostics
 - **ARP**: Resolves IP to MAC addresses


Link Layer

- Handles physical data transmission and MAC addressing
 - MAC addresses uniquely identify devices
 - Protocols vary depending on media:
 - Ethernet, Wi-Fi, etc.
- Converts data into electrical signals for transfer

Client-Server Model

- Client: Requests data
- Server: Provides requested resources
- Example: Web browser (client) requesting a webpage from a web server
- Independent development of client and server applications

Further Study

- Explore protocols in action using network tools like Wireshark.
- Experiment with TCP and UDP performance in real-time applications.

Contents