
Relational Databases

Contents 1

Contents

Key Concepts

Worked Example

SQL

Python and SQL

Contents 2

Key Concepts

Contents 3

Objectives

Explain the concept of a database.
Explain the concept of a relational database.

Understand key database concepts: tables, records, fields, data types, primary keys,
foreign keys.
Learn how relational databases help eliminate data inconsistency and redundancy.

Contents 4

What is a Database?

A database is an organized collection of data that allows for easy access,
management, and updating.
Examples:

Schools store student information (e.g., grades).

Online stores like Amazon track products, orders, and inventory.

Contents 5

Relational Databases

A relational database stores data in tables and links them using common fields.

Key Features:
Tables store data in rows and columns.

Relationships connect tables using keys.

Example:

Students and Classes tables linked by a common student ID.

Contents 6

Key Concepts: Table

A Table is a collection of data organized in rows and columns.

Example:
The Student table might include columns like StudentID, Name, Age, and
Address.

Contents 7

Key Concepts: Record (Row)

A Record is a single set of information in a table.

Example:
One row in the Student table could be "John Doe, Age 16, Address: 123 Street."

Contents 8

Key Concepts: Field (Column)

A Field is a specific attribute in a table.

Example:
Fields in Student could be Name, Age, and Address.

Contents 9

Key Concepts: Data Types

Data Types specify the kind of data stored in a field.

Common Types:

Text: Names, addresses.

Integer: Whole numbers (e.g., Age).
Decimal: Numbers with decimals (e.g., prices).

Date/Time: Dates and times.

Contents 10

Key Concepts: Primary Key

A Primary Key is a unique identifier for each record in a table.

Example:
StudentID in the Student table.

Contents 11

Key Concepts: Foreign Key

A Foreign Key links tables together by referencing the primary key of another
table.

Example:
StudentID in Classes table links to the Student table.

Contents 12

Data Redundancy & Inconsistency

Data Redundancy: Storing the same data in multiple places.
Data Inconsistency: Conflicting copies of the same data.

Example:

Storing a student’s contact info in both Student and Classes can cause errors if
updated inconsistently.

Contents 13

Eliminating Redundancy & Inconsistency

Relational databases store each piece of data once, reducing redundancy.
Changes to a record (e.g., address) need only be updated in one table.

Example:
The Student table holds the address, while Classes stores a foreign key linking the
student.

Contents 14

Summary

Databases organize data for easy access and management.

Relational databases link data across tables using relationships.

Concepts like tables, records, fields, primary keys, and foreign keys are essential.

They help eliminate redundancy and prevent inconsistency.

Contents 15

Worked Example

Contents 16

Objectives

Understand relational databases.

Convert flat-file data into a relational database.

Contents 17

Understanding Flat-File Systems

A flat-file system stores all data in one table (e.g., a spreadsheet). It can lead to
redundancy (duplicate data) and inconsistency (conflicting data).

Example Spreadsheet:

StudentID Name Age ClassID Class Name Teacher Room

1 John 16 C001 Maths Mr. Smith 101

1 John 16 C002 Science Mrs. Johnson 102

2 Jane 15 C001 Maths Mr. Smith 101

Contents 18

Problems with Flat-File Systems

Redundancy: Duplicate data (e.g., student info repeated for each class).
Inconsistency: Conflicting data if changes aren’t applied uniformly.

Limited Scalability: Difficult to manage as data grows.

Contents 19

Converting to a Relational Database

To solve these problems, split data into related tables:

Student Table: Stores student details.

Class Table: Stores class information.

NB. It is recommended to name the tables using a singular form

Contents 20

Example Tables

Student Table:

StudentID (PK) Name Age

1 John 16

2 Jane 15

Class Table:

ClassID (PK) Class Name Teacher Room

C001 Maths Mr. Smith 101

C002 Science Mrs. Johnson 102

Contents 21

Creating Relationships

But, now we've lost the connection between the two entities!

We need to put that back by using a linking table to represent the Many-to-Many
relationship between students and classes.

Enrollment Table:

StudentID (FK) ClassID (FK)

1 C001

1 C002

2 C001

Contents 22

Degrees of relationship

One-to-One
Each record in Table A relates to one record in Table B.

One-to-Many
One record in Table A relates to many records in Table B.

Many-to-Many
Many records in Table A relate to many records in Table B. Requires a linking table.

Contents 23

Database Relationships

Degrees of relationships:

One-to-One: Rare, usually an attribute of one table.
One-to-Many: Example: One teacher teaches many subjects.

Many-to-Many: Example: Many students enroll in many classes (resolved with a
linking table).

Contents 24

How to Determine the Relationship

Ask two questions:

1. One record in Table A relates to how many records in Table B?

2. One record in Table B relates to how many records in Table A?

The answers will guide you to either One-to-One, One-to-Many, or Many-to-Many.

Contents 25

Data Redundancy & Inconsistency Solved

Reduced Redundancy: Data is only stored once (e.g., student details in Student
table).

Prevented Inconsistency: Changes are made in one place, reflected in all related
records.

Contents 26

Example - Teacher & Subject Relationship

Teacher Table:

TeacherID (PK) Name SubjectID (FK)

1 Mr. Smith 1

2 Mrs. Johnson 2

Subject Table:

SubjectID (PK) Subject

1 Maths

2 Science

Contents 27

Data Types

Each field has a data type:

StudentID: Integer.

Teacher Name: String.

ClassID: Alphanumeric.

Contents 28

Summary

1. Reduces Redundancy: Data is stored once.
2. Prevents Inconsistency: Updates are easy and uniform.

3. Efficient Management: Easy to scale and manage.

Contents 29

Key Terms

Term Definition

Table Collection of records (rows).

Record A single row of related data.

Field An individual column of data.

Primary Key Unique identifier in a table.

Foreign Key A field linking to a primary key in another table.

Contents 30

Worked Example Recap

Start with a flat-file (spreadsheet).

Identify redundancy and inconsistency issues.

Break data into relational tables.

Link data using foreign keys.

Contents 31

SQL

Contents 32

Objectives

Learn how to use SELECT , FROM , and WHERE to retrieve and filter data.

Use ORDER BY to sort results.

Query multiple tables using joins or table references.

Use INSERT INTO to add new data.

Use UPDATE and DELETE to modify or remove records.

Contents 33

What is SQL?

SQL (Structured Query Language) is used to manage and interact with relational
databases.

Key SQL operations:

Retrieve data
Insert new records

Update existing data

Delete data

Contents 34

SELECT Statement

Retrieve data from a database.

Basic Syntax:

SELECT column1, column2, ...
FROM table_name;

Example:

SELECT StudentName, Age
FROM Student;

This retrieves the StudentName and Age columns from the Student table.

Contents 35

WHERE Clause

Filter records based on a condition.

Syntax:

SELECT column1, column2, ...
FROM table_name
WHERE condition;

Example:

SELECT StudentName, Age
FROM Student
WHERE Age > 15;

This retrieves students older than 15.

Contents 36

ORDER BY Clause

Sort the result set in ascending (ASC) or descending (DESC) order.

Syntax:

SELECT column1, column2, ...
FROM table_name
ORDER BY column1 [ASC | DESC];

Example:

SELECT StudentName, Age
FROM Student
ORDER BY Age DESC;

This retrieves students sorted by age in descending order.

Contents 37

Querying Multiple Tables

Extract data from more than one table using joins or references.

Example:

SELECT Student.StudentName, Classes.ClassName
FROM Student, Enrollment, Classes
WHERE Student.StudentID = Enrollment.StudentID
AND Classes.ClassID = Enrollment.ClassID;

This retrieves StudentName and ClassName from related tables.

Contents 38

INSERT INTO Statement

Add new records to a table.

Syntax:

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

Example:

INSERT INTO Student (StudentID, StudentName, Age)
VALUES (4, 'Emily Green', 17);

This inserts a new student into the Student table.

Contents 39

UPDATE Statement

Change existing data in a table.

Syntax:

UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

Example:

UPDATE Student
SET Age = 18
WHERE StudentName = 'John Doe';

This updates the age of John Doe.

Contents 40

DELETE Statement

Remove records from a table.

Syntax:

DELETE FROM table_name
WHERE condition;

Example:

DELETE FROM Student
WHERE StudentID = 4;

This deletes the student with ID 4.

Contents 41

Summary of Key SQL Commands

Command Purpose Example

SELECT Retrieve data SELECT StudentName FROM Students;

FROM
Specifies the
table

SELECT * FROM Students;

WHERE Filters records SELECT * FROM Students WHERE Age = 16;

ORDER BY Sorts data SELECT * FROM Students ORDER BY Age DESC;

INSERT
Adds new data

INSERT INTO Students (StudentID,

Here’s the entire slide deck based on the provided notes, formatted in markdown for
MARP:

Contents 42

Python and SQL

Contents 43

Objectives"

Set up and interact with an SQLite3 database using Python

Create tables (Students and Classes), insert data, and establish relationships.

Query the database to retrieve, update, and manage data.

Contents 44

Prerequisites
Install Python 3 or higher

Ensure sqlite3 is available (comes pre-installed with Python)

Basic knowledge of Python syntax

Contents 45

Part 1: Setting Up the Database

Contents 46

Step 1: Importing SQLite3 in Python

import sqlite3

import sqlite3 allows you to use SQLite3 in Python, which is a lightweight, file-
based database system.

Contents 47

Step 2: Creating a Connection
conn = sqlite3.connect('school.db')
cursor = conn.cursor()

sqlite3.connect('school.db') creates or connects to a SQLite database file.

cursor = conn.cursor() creates a cursor to interact with the database.

Contents 48

Part 2: Creating Tables

Contents 49

Step 3: Create the Students Table

create_students_table = '''
CREATE TABLE IF NOT EXISTS Student (
 StudentID INTEGER PRIMARY KEY,
 StudentName TEXT NOT NULL,
 Age INTEGER
);
'''
cursor.execute(create_students_table)
conn.commit()

Creates a Student table with StudentID , StudentName , and Age .

Contents 50

Step 4: Create the Class Table

create_class_table = '''
CREATE TABLE IF NOT EXISTS Class (
 ClassID TEXT PRIMARY KEY,
 ClassName TEXT NOT NULL,
 Teacher TEXT,
 RoomNumber TEXT
);
'''
cursor.execute(create_class_table)
conn.commit()

Creates a Class table with ClassID , ClassName , Teacher , and RoomNumber .

Contents 51

Step 5: Create the Enrollment Table

create_enrollment_table = '''
CREATE TABLE IF NOT EXISTS Enrollment (
 StudentID INTEGER,
 ClassID TEXT,
 FOREIGN KEY (StudentID) REFERENCES Student(StudentID),
 FOREIGN KEY (ClassID) REFERENCES Class(ClassID)
);
'''
cursor.execute(create_enrollment_table)
conn.commit()

Enrollment links students and classes using foreign keys.

Contents 52

Part 3: Inserting Data

Contents 53

Step 6: Insert Data into Student table

students = [
 (1, 'John Doe', 16),
 (2, 'Jane Roe', 15),
 (3, 'Sam White', 16)
]
cursor.executemany('INSERT INTO Student (StudentID, StudentName, Age) VALUES (?, ?, ?)', students)
conn.commit()

Inserts sample students into the Student table.

Contents 54

Step 7: Insert Data into Classes

classes = [
 ('C001', 'Maths', 'Mr. Smith', '101'),
 ('C002', 'Science', 'Mrs. Johnson', '102'),
 ('C003', 'History', 'Mr. Brown', '201')
]
cursor.executemany('INSERT INTO Class (ClassID, ClassName, Teacher, RoomNumber) VALUES (?, ?, ?, ?)', classes)
conn.commit()

Inserts sample data into the Class table.

Contents 55

Step 8: Insert Data into Enrollment

enrollments = [
 (1, 'C001'),
 (1, 'C002'),
 (2, 'C001'),
 (2, 'C003'),
 (3, 'C002')
]
cursor.executemany('INSERT INTO Enrollment (StudentID, ClassID) VALUES (?, ?)', enrollments)
conn.commit()

Links students to classes using the Enrollment table.

Contents 56

Part 4: Querying the Database

Contents 57

Step 9: Retrieve Students and Classes

query = '''
SELECT Student.StudentName, Student.Age, Class.ClassName, Class.Teacher
FROM Enrollment
JOIN Student ON Enrollment.StudentID = Student.StudentID
JOIN Class ON Enrollment.ClassID = Class.ClassID;
'''
cursor.execute(query)
results = cursor.fetchall()

for row in results:
 print(f"Student: {row[0]}, Age: {row[1]}, Class: {row[2]}, Teacher: {row[3]}")

Retrieves students and their enrolled classes.

Contents 58

Step 10: Retrieve Students in a Specific Class

query = '''
SELECT Student.StudentName, Student.Age
FROM Enrollment
JOIN Student ON Enrollment.StudentID = Student.StudentID
WHERE Enrollment.ClassID = 'C001';
'''
cursor.execute(query)
results = cursor.fetchall()

print("Students enrolled in Maths:")
for row in results:
 print(f"Student: {row[0]}, Age: {row[1]}")

Retrieves students enrolled in a specific class (Maths in this case).

Contents 59

Part 5: Updating and Deleting Data

Contents 60

Step 11: Update Student Information

cursor.execute('UPDATE Student SET Age = 16 WHERE StudentName = "Jane Roe"')
conn.commit()

cursor.execute('SELECT * FROM Student WHERE StudentName = "Jane Roe"')
print(cursor.fetchone())

Updates the age of a student (Jane Roe).

Contents 61

Step 12: Delete a Student

cursor.execute('DELETE FROM Student WHERE StudentName = "Sam White"')
conn.commit()

cursor.execute('SELECT * FROM Student')
print(cursor.fetchall())

Deletes a student (Sam White).

Contents 62

Part 6: Closing the Database Connection

Contents 63

Close the connection

conn.close()

Closes the database connection.

Contents 64

Summary
Set up and managed an SQLite3 database using Python.

Created Student , Class , and Enrollment tables.

Inserted, retrieved, updated, and deleted data using SQL.

Contents 65

