
Representation of
Data

Contents 1

Contents
Number Systems

Units

Binary Arithmetic
Hexadecimal

Negative Numbers

Character Encoding

Images
Sound

Compression

Contents 2

Number Systems

Contents 3

Objectives
Describe the binary number system (Base-2)

Convert between decimal (denary) and binary number bases (Base-10 and Base-2)

Contents 4

Binary Number System
a computer is built of lots of transistors - a
type of semiconductor.
They act like a switch either allowing a
voltage to pass through or not.

They can be in two states which can be
represented by the digits and (or
True and False).

This aligns neatly with a number system,
the number base we call binary or base 2.

Contents 5

Counting in Binary
Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

To count to , but only have the digits
 and

How have those binary numbers been
arrived at?

Contents 6

Decimal System (Base-10)
Hundreds Tens Units

2 4 5

Base 10 uses powers of 10 for each
column

So, we have:

Contents 7

Binary System (Base-2)
16 8 4 2 1

1 0 1

Base 2 uses powers of 2 for each
column

So, we have:

Contents 8

Converting Decimal to Binary (Method 1)
128 64 32 16 8 4 2 1

1 1 1 1 0 1 0 1

Add the column headings (powers of
2)

Sum the column headings where
there is a

()

.

Contents 9

Converting Decimal to Binary (Method 2)
Quotient New Number Remainder

245/2 122 1

122/2 61 0

61/2 30 1

30/2 15 0

15/2 7 1

7/2 3 1

3/2 1 1

1/2 0 1

Repeated division by 2 (the base)

Take the decimal number and
repeatedly divide by 2

Write down the remainder

Stop when zero is reached

Read the result upwards to get the
binary value

Contents 10

Converting Binary to Decimal (Method 1)
Taking the binary number

Multiply current total by 2

Add the current digit

Continue until there are no more
digits left.

Contents 11

Converting Binary to Decimal (Method 2)
Taking the binary number

Use the positional notation, multiply each digit by the corresponding power of two
and sum these products:

Contents 12

Convert Binary to Decimal (Method 2)
binary_string = "11110101"
decimal = 0
power = 128 # Start with the highest power for an 8-bit number (2^7)

Loop through the binary string from left to right
for bit in binary_string:
 decimal += int(bit) * power
 power //= 2 # Integer division to reduce the power by half

print(f"The decimal equivalent of {binary_string} is {decimal}")

The power starts at 128 () and is halved after each iteration using power //= 2 .

Loop through the string from left to right, processing each bit in order
Each bit's value is multiplied by the corresponding power of 2 and added to the
decimal result.

Contents 13

Summary & Recap
What is binary and why computers use it

Converting between decimal and binary (two methods for each)

Contents 14

Units

Contents 15

Objectives
Understand what bits and bytes are.
Explain MSB (Most Significant Bit) and LSB (Least Significant Bit).

Determine if a binary number is odd or even.

Calculate the range of values for a given number of bits.

Identify common names for multiples of bytes.

Contents 16

Bits and Bytes
A bit is the smallest unit of data, either 0 or 1.

A byte is a group of 8 bits.

One byte is often enough to store a single character.

Contents 17

Most Significant Bit (MSB) and Least Significant Bit
(LSB)

Most Significant Bit (MSB):
Leftmost bit in a binary number.

Holds the highest value (e.g., 2^7 in an 8-bit binary number).

Least Significant Bit (LSB):
Rightmost bit in a binary number.

Holds the lowest value (e.g., 2^0 in an 8-bit binary number).

Contents 18

Binary Example: MSB and LSB

1 0 1 1 0 0 1 0

MSB LSB

The leftmost bit is the MSB
The rightmost bit is the LSB.

Contents 19

Identifying Odd or Even Binary Numbers

The LSB determines whether a number is odd or even:

LSB = 1 → odd number.
LSB = 0 → even number.

Examples:

 → odd.

 → even.

Contents 20

Range of Values for Bits

1 bit → 2 distinct values (0, 1).

2 bits → 4 distinct values (0 to 3).

3 bits → 8 distinct values (0 to 7).

1 byte (8 bits) → 256 distinct values (0 to 255).

Formula:

Number of values = , where is the number of bits.
Maximum value =

Contents 21

Byte Multiples
Table of Common Units:

Unit Equivalent (Bytes)

1 Kilobyte (KB) 1,024

1 Megabyte (MB) 1,048,576

1 Gigabyte (GB) 1,073,741,824

1 Terabyte (TB) 1,099,511,627,776

1 Petabyte (PB) 1,125,899,906,842,624

Contents 22

Nibble and Word

Nibble: 4 bits (half a byte).

Word: The amount of data a processor can handle, typically 32 or 64 bits.

Real-world Context:

1 TB = the amount of information in a large library.

1 PB = a stack of CDs a mile high!

Contents 23

Binary Multiples (IEC Standard)

IEC Standard Table:

Unit Short form Magnitude

Kibibyte KiB

Mebibyte MiB

Gibibyte GiB

Tebibyte TiB

Pebibyte PiB

Note: These terms have been slow to adopt but are technically more accurate.

Contents 24

Storage Terminology: Decimal vs. Binary
How big is your 500Gb hard drive? It depends ...

Decimal (Gigabyte - GB):

Hard drive manufacturers use decimal
to measure storage.

1 GB = bytes = 1,000,000,000
bytes.

So, a 500GB hard drive is advertised
as having:

Binary (Gibibyte - GiB):

Operating systems like Windows use
binary to calculate storage.

1 GiB = bytes = 1,073,741,824
bytes.

To convert 500GB into Gibibytes
(GiB), we divide by :

Contents 25

Challenge Question
Can you find out the names of even bigger byte multiples?

How big is a Zoogolplex?

Contents 26

Binary Arithmetic

Contents 27

Objectives
Learn to add two binary numbers

Understand how binary shift operators perform multiplication and division by
powers of 2
Use binary shift operators >> and <<

Contents 28

Introduction to Binary Arithmetic

All computer data is processed in binary (Base-2).

Computers use transistors to represent two states:
0 = no charge

1 = charge

All arithmetic operations (add, subtract, multiply, divide) must be performed using
binary.

Contents 29

Binary Addition Rules

Binary addition is similar to decimal addition.

Only four possible outcomes for adding two binary digits:

Operation Result

0 + 0 0

0 + 1 or 1 + 0 1

1 + 1 0 (carry 1)

Contents 30

Addition with Carry

Four possible rules with carry:

Operation Result

0 + 0 + carry 1 1

0 + 1 + carry 1 0 (carry 1)

1 + 1 + carry 0 or 1 1 (carry 1)

1 + 1 + carry 1 0 (carry 1)

Contents 31

Example of Binary Addition

Example:
Add and

01101110
00011100 +

10001010

 1111

Contents 32

Overflow Error

An Overflow Error occurs when the result exceeds the available bits.

Example (8-bit addition):

, which exceeds 8 bits:

11111110 +
00000010 =

00000000 (overflow)

Contents 33

Binary Multiplication by Shifting

Multiplication by powers of 2 uses left shifts (<<).

Shift left by 1 bit = multiply by 2.

Shift left by 2 bits = multiply by 4.

Example:

 <<

Equivalent to:

Contents 34

Binary Division by Shifting

Division by powers of 2 uses right shifts (>>).

Shift right by 1 bit = divide by 2.

Shift right by 2 bits = divide by 4.

Example:

 >>

Equivalent to

Contents 35

Errors in Binary Shifts

Right shift rounding down:

Example: shifted right by 1 becomes .

 (11) >> 1 = (5)

Left shift overflow:

Example: shifted left by 1:

 (160) << (64) (Overflow)

Contents 36

Python Shift Operators

Use Python to experiment with shifting:

>>> a = 5
>>> b = a << 1 # Shift left (multiply by 2)
>>> b
10

Try shifting with >> for division.

Contents 37

Challenge Questions

1. Add the binary numbers and .
2. Multiply by shifting left.

3. Divide by shifting right.

Contents 38

Hexadecimal

Contents 39

Objectives

Explain why hexadecimal is used in computer science.
Represent whole numbers in hexadecimal.

Convert between hexadecimal, binary, and decimal.

Contents 40

Introduction to Binary & Hexadecimal

Computers rely on two-state switches (on/off), represented as and (binary).

Hexadecimal (Base-16) is used as a shorthand for binary for easier readability.

Contents 41

Why Use Hexadecimal?

Long binary strings are hard to read, e.g.,

.

The same binary string is more manageable in hexadecimal:
.

NB. Computers ONLY store data using binsyy, hexadecimal is a shorthand for us

Contents 42

Base-16 System (Hexadecimal)

Hexadecimal uses digits 0-9 and A-F to represent values.

Each hex digit corresponds to 4 binary digits:

Base-10 Base-2 Base-16

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

Base-10 Base-2 Base-16

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F
Contents 43

Hexadecimal and Binary

Hexadecimal makes working with binary simpler.

E.g., can be split into groups of 4:
0111 0010 1010 0000 1111 0010 1110 0101

Conversion to hex:

Contents 44

Uses of Hexadecimal

Concise Representation: Each hex digit = 4 binary bits.

Memory Addresses: Easier to manage than binary.

Color Codes: Used in web design (e.g., #FF5733).

Conversion: More readable than binary.

Contents 45

Decimal to Hexadecimal Conversion (Method 1)

Repeated Division by 16:

1. Divide the decimal number by 16.

2. Write down the remainder.

3. Continue dividing until the quotient is
0.

4. Concatenate the hexadecimal digits.

Example: Convert to hex:
 remainder

Hex result:

Contents 46

Decimal to Hexadecimal (Method 2: Via Binary)

1. Convert the decimal to binary.

2. Group the binary into 4-bit nibbles.
3. Convert each nibble to hexadecimal.

Example: Convert :

,

Result:

Contents 47

Slide 9: Binary to Hexadecimal Conversion

1. Split the binary string into 4-bit
groups.

2. Find the hex equivalent for each
group.

Example: Convert :
Split: and

,

Result:

Contents 48

Hexadecimal to Binary Conversion

1. Convert each hex digit to its binary
nibble equivalent.

2. Concatenate the binary nibbles.

Example: Convert :
,

Result:

Contents 49

Hexadecimal to Decimal Conversion

Convert the hex number to binary.

Convert the binary number to
decimal.

Example: Convert :
,

Contents 50

Challenge Questions

Convert to binary and decimal.
Convert to hex and decimal.

Convert to binary and hex.

Contents 51

Negative Numbers

Contents 52

Objectives

Understand that signed binary can represent negative integers

Learn two's complement as a common coding scheme

Represent negative and positive integers using two's complement

Perform subtraction with two's complement

Contents 53

The Challenge of Negative Numbers in Binary

In binary systems, we only have two symbols, 0 and 1 . However, we need to
represent both the size and the sign of numbers, including negative values. Two
common methods are:

Sign and Magnitude
Two's Complement

Contents 54

Sign and Magnitude Representation

The Most Significant Bit (MSB) acts as the sign indicator.
0 in MSB means a positive number, and 1 in MSB indicates a negative number.

Examples in an 8-bit system:

00001010 represents

10001010 represents

Limitations:

Two representations of zero (positive and negative)
Complex arithmetic

Contents 55

Two's Complement

Two's complement uses the MSB to
indicate the sign and contributes to the
value.

MSB = 1 represents a negative value.

Observations:

Only one representation of zero.

Range is to in an n-
bit system.

Binary Decimal

000 0

001 1

010 2

011 3

100 -4

101 -3

110 -2

111 -1

Contents 56

Converting Decimal to Two's Complement

Method 1: Invert and Add 1

Example for :

1. Convert to binary:

2. Invert digits:

3. Add 1:

Contents 57

Converting Decimal to Two's Complement

Method 2: Flip After First 1

Example for :

1. Convert to binary:
2. Copy all bits after first 1 , flip remaining:

Contents 58

Converting Two's Complement to Decimal

Sum the products of the column weightings.

Example for :

-128 64 32 16 8 4 2 1

1 1 0 1 1 0 0 0

Final result:

Contents 59

Subtraction in Two's Complement

Use the fact that .

Example:

1. Convert to negative: 0100_2 → 1100_2

2. Add to :

Ignore the carry, so the result is .

Contents 60

Range with a Given Number of Bits

The range of two's complement integers is given by:

 to

For an 8-bit system: Range is to .

Contents 61

Character Encoding

Contents 62

Objectives

Understand what a character set is

Explain how characters are represented using ASCII

Understand how character codes are grouped

Explain the difference between ASCII and Unicode

Contents 63

Character Sets

When a user types a key on the keyboard, the character is transferred as a code. Each
character corresponds to a unique number known as the character set.

Two primary character sets:

ASCII (American Standard Code for Information Interchange)

Unicode

Contents 64

ASCII Overview

ASCII is the widely used encoding standard introduced in 1963. It uses 7 bits, allowing
for different characters, including:

Digits: '0' - '9'

Lowercase letters: 'a' - 'z'
Uppercase letters: 'A' - 'Z'

Punctuation: ';', '*', '?', '@', etc.

Control codes like TAB, CR, LF

Originally designed for message communication between computers, ASCII became a
standardized text format.

Contents 65

ASCII Table

Contents 66

ASCII Table - digits

Character Decimal Hexadecimal Binary

'0' 48 30 0110000

'1' 49 31 0110001

'2' 50 32 0110010

...

By "stripping off" the leading bits, we can reveal the value of the character

Subtract from the ASCII code

NB. Always use quotes when writing characters (e.g., '5') to distinguish them from
numeric values (e.g.,).

Contents 67

Case Conversion in ASCII

The difference between uppercase and lowercase characters lies in one bit in the
position.

Character Decimal Hexadecimal Binary

'A' 65 41 1000001

'B' 66 42 1000010

...

'a' 97 61 1100001

'b' 98 62 1100010

Contents 68

Exploring ASCII in Python

Python has built-in functions to explore ASCII codes.

Get ASCII code for a character

ascii_code = ord('A')
print(f"ASCII Code for 'A': {ascii_code}")

Get character for an ASCII code

ascii_char = chr(97)
print(f"Character for ASCII 97: {ascii_char}")

Contents 69

Exploring ASCII in Python

Convert character digit to value:

digit_char = '5'
numeric_value = ord(digit_char) - ord('0')
print(f"Numeric value of '{digit_char}': {numeric_value}")

Contents 70

Extended ASCII

Standard ASCII uses 7 bits. To support more symbols and languages, Extended ASCII
uses 8 bits (1 byte), allowing for 256 characters.

Extended ASCII includes symbols like:

Special characters: '£', '€'
Accented characters: 'é', 'ü'

Extended ASCII varies across different systems, leading to compatibility issues.

Contents 71

Unicode

Unicode is a universal encoding system that overcomes ASCII's limitations. It uses 8, 16,
or 32 bits to represent characters and supports over a million code points for global
languages.

Unicode preserves ASCII for its first 127 characters, ensuring compatibility between
ASCII and Unicode.

Contents 72

UTF-8

UTF-8 is the encoding used to represent Unicode in binary. It translates Unicode code
points to a unique binary string for storage or transmission.

When you work with web or Python programming, you’ll often encounter UTF-8 as the
standard encoding.

Contents 73

Images

Contents 74

Objectives

Understand what a pixel is and how it relates to an image.

Describe how a bitmap represents an image using pixels and color depth.
Understand:

Image resolution

Color depth
Calculate storage requirements for bitmap images.

Convert binary data to a bitmap image.

Contents 75

Bit-mapped Graphics

Bitmap: A grid of elements called pixels.

Pixel: Smallest identifiable element of an image.

Each pixel has a numerical value representing a color.

Common file formats: .BMP, .JPG, .PNG.

Contents 76

Image Resolution

1. Pixels per inch (PPI) or Dots per inch (DPI): Higher PPI/DPI = Sharper image.

2. Total pixel count: Width x Height (e.g.,).

Contents 77

Image Size and DPI

DPI impacts print size:
 pixels @ 300 DPI = 15 × 10 inches.

@ 72 DPI = 62.5 × 41.6 inches.

Contents 78

Color Depth (Bit Depth)

1-bit per pixel: Monochrome image (2 colors).

2 bits: 4 possible colors.

Formula: = Total number of colors.

8 bits = 256 colors
24 bits (True Color) = 16.7 million colors.

32 bits: 24 bits for color + 8 bits for transparency (alpha channel).
Contents 79

Color Depth Examples

True Color (24-bit) provides more realistic images.

Human eye can distinguish about 10 million colors.

Contents 80

Calculating File Size for Bitmap Images

Formula:

Example:

 pixels, 12-bit depth:

 bits = 720000 bytes (720 KB).

Contents 81

Image Metadata

Additional information stored in image files:
File format.

Dimensions.

Color depth.
Device used, location, and more.

Contents 82

Practical Examples with Python

Exercise 1: Load and Display an
Image

from PIL import Image
import matplotlib.pyplot as plt

img = Image.open("dunwich.jpg")
plt.imshow(img)
plt.axis('off')
plt.show()

Contents 83

Python Example: Grayscale Conversion

img = Image.open("dunwich.jpg")
gray_img = img.convert('L')
plt.imshow(gray_img, cmap='gray')
plt.axis('off')
plt.show()

Contents 84

Python Example: Image Resizing

new_size = (300, 200)
resized_img = img.resize(new_size)
plt.imshow(resized_img)
plt.axis('off')
plt.show()

Contents 85

Python Example: Image Flipping

flipped_horizontal_img = img.transpose(Image.FLIP_LEFT_RIGHT)
flipped_vertical_img = img.transpose(Image.FLIP_TOP_BOTTOM)

plt.subplot(1, 2, 1)
plt.imshow(flipped_horizontal_img)
plt.subplot(1, 2, 2)
plt.imshow(flipped_vertical_img)
plt.show()

Contents 86

Python Example: RGB Channel Extraction

r, g, b = img.split()

plt.subplot(1, 3, 1)
plt.imshow(r, cmap='Reds')
plt.subplot(1, 3, 2)
plt.imshow(g, cmap='Greens')
plt.subplot(1, 3, 3)
plt.imshow(b, cmap='Blues')
plt.show()

Contents 87

Challenge Questions

How do resolution and color depth affect image quality and file size?
How does DPI impact print quality vs web display?

What is the importance of metadata in image files?

Contents 88

Sound

Contents 89

Objectives

Understand that sound is analogue and must be converted into digital form for
storage and processing.

Learn how analogue signals are sampled to create a digital sound representation.

Describe digital sound representation in terms of sampling rate and sample
resolution.

Calculate sound file sizes based on sampling rate and sample resolution.

Contents 90

What is Sound?

Sound is a vibration of air particles that travels as a wave from the source to our ears,
which act as pressure sensors. The frequency of the wave is measured in Hertz (Hz),
determining the pitch. Lower frequency equals lower pitch.

Sound is analogue, meaning it is continuously changing.

The human ear typically detects sounds from ~20Hz to ~20kHz. Frequencies above
20kHz are called ultrasound, while frequencies below 10Hz are called infrasound.

Contents 91

Sound Conversion and Processing

Microphone: Converts sound waves
into electrical signals.

Speaker: Converts electrical signals
back into sound waves.
ADC (Analogue-to-Digital
Converter): Converts the electrical
signal into digital form.

DAC (Digital-to-Analogue
Converter): Converts digital data back
to analogue signals.

Contents 92

Sampling

Sampling measures an analogue signal at regular time intervals. The sampling rate
(measured in Hz) determines how frequently samples are taken, affecting the accuracy
of the digital representation. Higher sampling rates result in better quality audio.

For example, CDs use a 44.1kHz sampling rate, while phone systems use around 8kHz.

The Nyquist Theorem ensures that a signal can be reconstructed if the sampling
rate is at least twice the signal’s highest frequency.

Contents 93

Quantisation

Quantisation refers to assigning numerical values to each sample, with the bit depth (or
sampling resolution) defining how many bits are used per sample. The higher the bit
depth, the more accurate the representation of the sound wave.

Contents 94

Quantisation Example

For example:

16-bit audio provides 65,536 levels of precision, used in CDs.

24-bit audio offers 16.7 million levels, used in DVDs.

The bit depth also affects the dynamic range—the difference between the loudest and
softest sounds, measured in decibels (dB). More bits lead to a greater dynamic range.

Human ears may not perceive the difference between 16-bit and 24-bit recordings, but
higher bit depth aids sound engineers. It's better to record at the highest bit depth
possible and reduce if necessary for final output.

Contents 95

Calculating File Sizes

The formula for calculating the size of a sound file:

For example, a 30-second audio file with a sampling rate of 8kHz and a bit depth of 16
bits would require:

Contents 96

Audio Formats

Some common audio file formats include:

WAV: Uncompressed, commonly used in Windows.

AIFF: Similar to WAV, used in macOS.

MP3: Compressed using lossy compression.

WMA: Another lossy compression format from Microsoft.
OGG: Open-source format with lossless compression.

MID: Not an audio file, but used for MIDI data.

Contents 97

MIDI

MIDI (Musical Instrument Digital Interface) does not record sound but records data
about sound, such as note length, pitch, and velocity. MIDI files can be edited easily
and are far smaller than equivalent audio files.

MIDI cannot record vocal sounds but is widely used with digital instruments.

Contents 98

Python and Audio Processing

Using Python, you can manipulate audio with libraries like pydub , pyaudio , and
ffmpeg . Install them with the following commands:

pip install pydub ffmpeg-python pyaudio

Contents 99

Use Python to get audio data

Here’s a brief example of how you can use these libraries to retrieve audio details:

from pydub import AudioSegment
audio = AudioSegment.from_file("piano.mp3", format="mp3")

print({
 'duration': audio.duration_seconds,
 'sample_rate': audio.frame_rate,
 'channels': audio.channels,
 'sample_width': audio.sample_width,
 'frame_count': audio.frame_count(),
})

Contents 100

Use Python to play audio

from pydub.playback import play
play(audio)

Experiment by changing the sample rate or bit depth:

audio = audio.set_frame_rate(6000) # Change the sample rate
audio = audio.set_sample_width(1) # Change the bit depth to 8 bits
play(audio)

Contents 101

Compression

Contents 102

Objectives

Explain what data compression is.

Understand the reasons for compressing data.

Differentiate between lossy and lossless compression.

Explain how Huffman coding compresses data.
Interpret Huffman trees.

Calculate storage for compressed and uncompressed data using Huffman coding
and ASCII.
Describe how Run Length Encoding (RLE) works.

Contents 103

Compression

Compression: Reducing file size to save space or speed up transfer.

Two Methods:
Lossy Compression – Data is permanently lost.

Lossless Compression – Data can be perfectly restored.

Contents 104

Why Compress?

Large image, sound, and text files take up storage and slow transfers.

Compression reduces file sizes, impacting both storage and performance.

Contents 105

Lossy Compression

Data is permanently lost and cannot
be restored.

Common in images (e.g., JPEG) and
audio (e.g., MP3).

Effective for media where exact
reproduction is not necessary.

Example: JPEG images remove subtle
details that the human eye might not
notice.

Contents 106

Lossy Compression (Cont.)

MP3 Audio Compression:

Reduces file size by eliminating inaudible sounds.

Relies on psycho-acoustics (our perception of sound).

The higher the bit rate, the better the quality but the larger the file.

Contents 107

Lossless Compression

Preserves all original data.
Used when exact reproduction is required (e.g., text, databases).

Two common methods:
Run Length Encoding (RLE)
Huffman Encoding

Contents 108

Run Length Encoding (RLE)

Identifies and compresses repeating patterns.

Example:

"AAAAA" becomes 5A .

Reduces file size when patterns are frequent.

Contents 109

Run Length Encoding (Images)

Compresses sequences of repeated
colors.

Monochrome image stored as runs of
black and white (e.g., 23W4B...).

Best for simple images like cartoons,
not detailed photographs.

23W4B6W1B2W1B6W4B9W1B9W1B6W4B23
W

This can be represented as a series of 0s
and 1s:

Contents 110

Huffman Encoding

Lossless compression technique based on symbol frequency.
Uses variable-length codes for characters (shorter codes for frequent symbols).

Example:

Word "BEETROOT" encoded into shorter binary sequences.

Contents 111

Huffman Encoding Example

Create the frequency table

Character Frequency

B 1

E 2

T 2

R 1

O 2

Assign a binary code to each letter.

Character Code

B 1

E 01

T 11

R 100

O 101

What's the problem here?
Contents 112

Huffman Coding Binary Tree

Contents 113

Huffman Coding Binary Tree

Take the two nodes with the lowest
frequencies out of the tree, join them
together to make a new node. The
label for this new node is the
combined frequency of these.
Place this new node back, ensuring
the list of nodes is still in ascending
order of frequency (lowest to
highest).

Repeat until there is only one node
left.

Contents 114

Huffman Coding Binary Tree
Take the next two nodes in the new list,
'BR' and 'E. Create a new parent node with
the sum of their frequencies and add this
new node to the original list, preserving
the order:

Contents 115

Huffman Coding Binary Tree

Repeat this process until there are no
more nodes to process:

Contents 116

Huffman Coding Binary Tree

Once the final tree has been created we assign either a '0' or a '1' to each of the edges,
the upper edges are labelled with a '1', the lower edges withe '0':

Contents 117

Huffman Coding Binary Tree

To read the encoding for each of the characters start with the root node and follow the
path to the target picking up either a '0' or a '1' as indicated by the label on those
paths. Thus:

'B' -> 0011

'R' -> 0010

'E' -> 000

'T' -> 1
'O' -> 01

Thus: 0011 000 000 1 0010 01 01 1 (spaces inserted to aid readability).

Contents 118

Summary of Compression

Lossy: Irreversible, smaller files (e.g., JPEG, MP3).
Lossless: Reversible, preserves original (e.g., RLE, Huffman).

Choose based on whether exact data preservation is needed.

Contents 119

